文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用人工智能研究甲状腺癌的定量分析:一项20年的文献计量分析。

Quantitative analysis of studies that use artificial intelligence on thyroid cancer: a 20-year bibliometric analysis.

作者信息

Gao YingZheng, Chen JiaHao, Fu Tao, Gu Yi, Du WeiDong

机构信息

The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.

出版信息

Front Oncol. 2025 Mar 18;15:1525650. doi: 10.3389/fonc.2025.1525650. eCollection 2025.


DOI:10.3389/fonc.2025.1525650
PMID:40171256
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11958942/
Abstract

In recent years, with the rapid advancement of computer science, artificial intelligence has found extensive applications and has been the subject of significant research within the healthcare industry, particularly in areas such as medical imaging, diagnostics, biomedical engineering, and health data analytics. Artificial intelligence has also made considerable inroads in the diagnosis and treatment of thyroid cancer. This study aims to evaluate the progress, current hotspots, and potential future directions of research on artificial intelligence in the field of thyroid cancer through a bibliometric analysis. This study retrieved literature on the application of artificial intelligence in thyroid cancer from 2004 to 2024 from the Web of Science Core Collection (WoSCC) database. A retrospective bibliometric analysis and visualization study of the filtered data were conducted using VOSviewer, CiteSpace, and the Bibliometrix package in R software. A total of 956 articles from 70 countries/regions were included. China had the highest number of publications, with Shanghai Jiao Tong University (China) being the most prolific research institution. The most prolific author was Wei, X. (n=14), while Haugen, B. R. was the most co-cited author (n=297). The Frontiers in Oncology (35 articles, IF=3.5, Q1) was the most frequently publishing journal, and Thyroid (cited 1,705 times) was the most co-cited journal. Keywords such as 'ultrasound,' 'deep learning,' and 'diagnosis' indicate research hotspots in this field. This study provides a comprehensive exposition of the current advancements, emerging trends, and future directions of artificial intelligence in thyroid cancer research. It serves as a valuable resource for clinicians and researchers, offering a systematic understanding of key focal areas in the field, thereby assisting in the identification and determination of future research trajectories.

摘要

近年来,随着计算机科学的迅速发展,人工智能得到了广泛应用,并成为医疗行业大量研究的主题,尤其是在医学成像、诊断、生物医学工程和健康数据分析等领域。人工智能在甲状腺癌的诊断和治疗方面也取得了显著进展。本研究旨在通过文献计量分析评估人工智能在甲状腺癌领域的研究进展、当前热点以及未来潜在的研究方向。本研究从科学网核心合集(WoSCC)数据库中检索了2004年至2024年关于人工智能在甲状腺癌中应用的文献。使用VOSviewer、CiteSpace和R软件中的Bibliometrix包对筛选后的数据进行了回顾性文献计量分析和可视化研究。共纳入了来自70个国家/地区的956篇文章。中国的出版物数量最多,上海交通大学(中国)是发文量最高的研究机构。发文量最高的作者是Wei, X.(n = 14),而Haugen, B. R.是被引频次最高的作者(n = 297)。《肿瘤前沿》(35篇文章,IF = 3.5,Q1)是发文最频繁的期刊,《甲状腺》(被引1705次)是被引频次最高的期刊。“超声”“深度学习”和“诊断”等关键词表明了该领域的研究热点。本研究全面阐述了人工智能在甲状腺癌研究中的当前进展、新趋势和未来方向。它为临床医生和研究人员提供了宝贵的资源,有助于系统地了解该领域的关键重点领域,从而辅助确定未来的研究轨迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/1e7811b6590a/fonc-15-1525650-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/7a81f08d89b1/fonc-15-1525650-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/19bc76aadd33/fonc-15-1525650-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/052135dd6c75/fonc-15-1525650-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/c2fd6f76647c/fonc-15-1525650-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/0a336ab6ca0c/fonc-15-1525650-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/ac96a5dd2c65/fonc-15-1525650-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/c37828bdd8d5/fonc-15-1525650-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/aee82b1b4671/fonc-15-1525650-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/1e7811b6590a/fonc-15-1525650-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/7a81f08d89b1/fonc-15-1525650-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/19bc76aadd33/fonc-15-1525650-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/052135dd6c75/fonc-15-1525650-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/c2fd6f76647c/fonc-15-1525650-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/0a336ab6ca0c/fonc-15-1525650-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/ac96a5dd2c65/fonc-15-1525650-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/c37828bdd8d5/fonc-15-1525650-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/aee82b1b4671/fonc-15-1525650-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/11958942/1e7811b6590a/fonc-15-1525650-g009.jpg

相似文献

[1]
Quantitative analysis of studies that use artificial intelligence on thyroid cancer: a 20-year bibliometric analysis.

Front Oncol. 2025-3-18

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[4]
Global research of artificial intelligence in strabismus: a bibliometric analysis.

Front Med (Lausanne). 2023-9-20

[5]
Evolutionary patterns and research frontiers of artificial intelligence in age-related macular degeneration: a bibliometric analysis.

Quant Imaging Med Surg. 2025-1-2

[6]
Research on ultrasound-based radiomics: a bibliometric analysis.

Quant Imaging Med Surg. 2024-7-1

[7]
Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) CiteSpace and VOSviewer.

Front Oncol. 2022-8-25

[8]
Comprehensive Global Analysis of Future Trends in Artificial Intelligence-Assisted Veterinary Medicine.

Vet Med Sci. 2025-5

[9]
Global research landscape and trends of papillary thyroid cancer therapy: a bibliometric analysis.

Front Endocrinol (Lausanne). 2023

[10]
Global research trends and future directions in diabetic macular edema research: A bibliometric and visualized analysis.

Medicine (Baltimore). 2024-6-21

本文引用的文献

[1]
Application of a Novel Multimodal-Based Deep Learning Model for the Prediction of Papillary Thyroid Carcinoma Recurrence.

Int J Gen Med. 2024-12-31

[2]
Predicting lymph node metastasis in thyroid cancer: systematic review and meta-analysis on the CT/MRI-based radiomics and deep learning models.

Clin Imaging. 2025-3

[3]
Artificial intelligence-based pathological application to predict regional lymph node metastasis in Papillary Thyroid Cancer.

Curr Probl Cancer. 2024-12

[4]
Pathology diagnosis of intraoperative frozen thyroid lesions assisted by deep learning.

BMC Cancer. 2024-8-29

[5]
Thy-DAMP: deep artificial neural network model for prediction of thyroid cancer mortality.

Eur Arch Otorhinolaryngol. 2025-3

[6]
Improved Diagnostic Accuracy of Thyroid Fine-Needle Aspiration Cytology with Artificial Intelligence Technology.

Thyroid. 2024-6

[7]
Deep learning models for thyroid nodules diagnosis of fine-needle aspiration biopsy: a retrospective, prospective, multicentre study in China.

Lancet Digit Health. 2024-7

[8]
Thyroid Cancer Incidence Among Korean Individuals: A Comparison of South Korea and the United States.

Laryngoscope. 2024-9

[9]
Cervical lymph node metastasis prediction from papillary thyroid carcinoma US videos: a prospective multicenter study.

BMC Med. 2024-4-12

[10]
Development and validation of prediction models for papillary thyroid cancer structural recurrence using machine learning approaches.

BMC Cancer. 2024-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索