Jafarzadeh S, Wedemeyer S, Fleck B, Stangalini M, Jess D B, Morton R J, Szydlarski M, Henriques V M J, Zhu X, Wiegelmann T, Guevara Gómez J C, Grant S D T, Chen B, Reardon K, White S M
Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway.
Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway.
Philos Trans A Math Phys Eng Sci. 2021 Feb 8;379(2190):20200174. doi: 10.1098/rsta.2020.0174. Epub 2020 Dec 21.
By direct measurements of the gas temperature, the Atacama Large Millimeter/submillimeter Array (ALMA) has yielded a new diagnostic tool to study the solar chromosphere. Here, we present an overview of the brightness-temperature fluctuations from several high-quality and high-temporal-resolution (i.e. 1 and 2 s cadence) time series of images obtained during the first 2 years of solar observations with ALMA, in Band 3 and Band 6, centred at around 3 mm (100 GHz) and 1.25 mm (239 GHz), respectively. The various datasets represent solar regions with different levels of magnetic flux. We perform fast Fourier and Lomb-Scargle transforms to measure both the spatial structuring of dominant frequencies and the average global frequency distributions of the oscillations (i.e. averaged over the entire field of view). We find that the observed frequencies significantly vary from one dataset to another, which is discussed in terms of the solar regions captured by the observations (i.e. linked to their underlying magnetic topology). While the presence of enhanced power within the frequency range 3-5 mHz is found for the most magnetically quiescent datasets, lower frequencies dominate when there is significant influence from strong underlying magnetic field concentrations (present inside and/or in the immediate vicinity of the observed field of view). We discuss here a number of reasons which could possibly contribute to the power suppression at around 5.5 mHz in the ALMA observations. However, it remains unclear how other chromospheric diagnostics (with an exception of H line-core intensity) are unaffected by similar effects, i.e. they show very pronounced 3-min oscillations dominating the dynamics of the chromosphere, whereas only a very small fraction of all the pixels in the 10 ALMA datasets analysed here show peak power near 5.5 mHz. This article is part of the Theo Murphy meeting issue 'High-resolution wave dynamics in the lower solar atmosphere'.
通过对气体温度的直接测量,阿塔卡马大型毫米波/亚毫米波阵列(ALMA)产生了一种用于研究太阳色球层的新诊断工具。在此,我们概述了在使用ALMA进行太阳观测的头两年中,在3波段和6波段获得的几个高质量、高时间分辨率(即1秒和2秒的时间间隔)图像时间序列的亮度温度波动情况,这两个波段分别以约3毫米(100吉赫兹)和1.25毫米(239吉赫兹)为中心。各种数据集代表了具有不同磁通量水平的太阳区域。我们进行快速傅里叶变换和 Lomb-Scargle 变换,以测量主导频率的空间结构和振荡的平均全局频率分布(即在整个视场中平均)。我们发现,从一个数据集到另一个数据集,观测到的频率有显著变化,这将根据观测所捕获的太阳区域(即与它们潜在的磁拓扑结构相关)进行讨论。虽然在大多数磁静数据集的3 - 5毫赫兹频率范围内发现了增强的功率,但当存在来自强潜在磁场集中区域(存在于观测视场内和/或其紧邻区域)的显著影响时,较低频率占主导。我们在此讨论了一些可能导致ALMA观测中5.5毫赫兹左右功率抑制的原因。然而,目前尚不清楚其他色球层诊断方法(除了H线芯强度)如何不受类似效应的影响,即它们显示出非常明显的3分钟振荡主导着色球层的动力学,而在此分析的10个ALMA数据集中,只有极小一部分像素在5.5毫赫兹附近显示出峰值功率。本文是西奥·墨菲会议议题“太阳低层大气中的高分辨率波动动力学”的一部分。