Suppr超能文献

关于 COVID-19 传播的早期检测系统模型的透视。

A perspective on early detection systems models for COVID-19 spreading.

机构信息

Università Degli Studi di Padova, Dipartimento di Ingegneria Industriale. Via Marzolo 9, 35131, Padova, Italy.

Università Carlo Cattaneo - LIUC. Corso Matteotti 22, 21053, Castellanza (Varese), Italy.

出版信息

Biochem Biophys Res Commun. 2021 Jan 29;538:244-252. doi: 10.1016/j.bbrc.2020.12.010. Epub 2020 Dec 5.

Abstract

The ongoing COVID-19 epidemic highlights the need for effective tools capable of predicting the onset of infection outbreaks at their early stages. The tracing of confirmed cases and the prediction of the local dynamics of contagion through early indicators are crucial measures to a successful fight against emerging infectious diseases (EID). The proposed framework is model-free and applies Early Warning Detection Systems (EWDS) techniques to detect changes in the territorial spread of infections in the very early stages of onset. This study uses publicly available raw data on the spread of SARS-CoV-2 mainly sourced from the database of the Italian Civil Protection Department. Two distinct EWDS approaches, the Hub-Jones (H&J) and Strozzi-Zaldivar (S&Z), are adapted and applied to the current SARS-CoV-2 outbreak. They promptly generate warning signals and detect the onset of an epidemic at early surveillance stages even if working on the limited daily available, open-source data. Additionally, EWDS S&Z criterion is theoretically validated on the basis of the epidemiological SIR. Discussed EWDS successfully analyze self-accelerating systems, like the SARS-CoV-2 scenario, to precociously identify an epidemic spread through the calculation of onset parameters. This approach can also facilitate early clustering detection, further supporting common fight strategies against the spread of EIDs. Overall, we are presenting an effective tool based on solid scientific and methodological foundations to be used to complement medical actions to contrast the spread of infections such as COVID-19.

摘要

正在进行的 COVID-19 疫情凸显了需要有效的工具,能够在感染爆发的早期阶段预测其发生。通过早期指标追踪确诊病例和预测传染病的局部动态是成功应对新发传染病(EID)的关键措施。所提出的框架是无模型的,并应用早期预警检测系统(EWDS)技术来检测感染在发病初期的地域传播变化。本研究使用了主要来自意大利民防部门数据库的 SARS-CoV-2 传播的公开可用原始数据。适应并应用了两种不同的 EWDS 方法,即 Hub-Jones (H&J) 和 Strozzi-Zaldivar (S&Z),以检测当前 SARS-CoV-2 爆发。即使在有限的日常开源数据上工作,它们也能及时发出警报信号并在早期监测阶段检测到疫情的发生。此外,EWDS S&Z 标准基于流行病学 SIR 进行了理论验证。讨论的 EWDS 成功地分析了自我加速系统,如 SARS-CoV-2 情况,通过计算发病参数来及早识别传染病的传播。该方法还可以促进早期聚类检测,进一步支持针对 EID 传播的共同防控策略。总体而言,我们正在提出一种基于坚实的科学和方法论基础的有效工具,用于补充医疗行动,以对抗 COVID-19 等感染的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee70/7834884/ff7029b6cdb9/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验