IEEE Trans Cybern. 2018 Sep;48(9):2670-2682. doi: 10.1109/TCYB.2017.2748418. Epub 2017 Dec 11.
This paper addresses the problem of robotic manipulators with unknown deadzone. In order to tackle the uncertainty and the unknown deadzone effect, we introduce adaptive neural network (NN) control for robotic manipulators. State-feedback control is introduced first and a high-gain observer is then designed to make the proposed control scheme more practical. One radial basis function NN (RBFNN) is used to tackle the deadzone effect, and the other RBFNN is also proposed to estimate the unknown dynamics of robot. The proposed control is then verified on a two-joint rigid manipulator via numerical simulations and experiments.
本文针对具有未知死区的机器人机械手问题展开研究。为了解决不确定性和未知死区的影响,我们引入了自适应神经网络(NN)控制方法。首先介绍了状态反馈控制,然后设计了一个高增益观测器,使所提出的控制方案更具实用性。一个径向基函数神经网络(RBFNN)用于处理死区效应,另一个 RBFNN 用于估计机器人的未知动力学。然后通过数值模拟和实验在一个两关节刚性机械手验证了所提出的控制。