Jasim Mohamed Mohamed, Oleiwi Bashra Kadhim, Azar Ahmad Taher, Mahlous Ahmed Redha
Control and Systems Engineering Department, University of Technology-Iraq, Baghdad, Iraq.
College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
Front Robot AI. 2024 Jun 14;11:1386968. doi: 10.3389/frobt.2024.1386968. eCollection 2024.
The performance of the robotic manipulator is negatively impacted by outside disturbances and uncertain parameters. The system's variables are also highly coupled, complex, and nonlinear, indicating that it is a multi-input, multi-output system. Therefore, it is necessary to develop a controller that can control the variables in the system in order to handle these complications. This work proposes six control structures based on neural networks (NNs) with proportional integral derivative (PID) and fractional-order PID (FOPID) controllers to operate a 2-link rigid robot manipulator (2-LRRM) for trajectory tracking. These are named as set-point-weighted PID (W-PID), set-point weighted FOPID (W-FOPID), recurrent neural network (RNN)-like PID (RNNPID), RNN-like FOPID (RNN-FOPID), NN+PID, and NN+FOPID controllers. The zebra optimization algorithm (ZOA) was used to adjust the parameters of the proposed controllers while reducing the integral-time-square error (ITSE). A new objective function was proposed for tuning to generate controllers with minimal chattering in the control signal. After implementing the proposed controller designs, a comparative robustness study was conducted among these controllers by altering the initial conditions, disturbances, and model uncertainties. The simulation results demonstrate that the NN+FOPID controller has the best trajectory tracking performance with the minimum ITSE and best robustness against changes in the initial states, external disturbances, and parameter uncertainties compared to the other controllers.
机器人操纵器的性能会受到外部干扰和不确定参数的负面影响。该系统的变量还具有高度耦合、复杂和非线性的特点,表明它是一个多输入多输出系统。因此,有必要开发一种能够控制系统中变量的控制器,以应对这些复杂情况。这项工作提出了六种基于神经网络(NN)的控制结构,分别结合比例积分微分(PID)和分数阶PID(FOPID)控制器,用于操作一个双连杆刚性机器人操纵器(2-LRRM)以进行轨迹跟踪。这些控制器分别被命名为设定点加权PID(W-PID)、设定点加权FOPID(W-FOPID)、类递归神经网络(RNN)PID(RNNPID)、类RNN FOPID(RNN-FOPID)、NN+PID和NN+FOPID控制器。采用斑马优化算法(ZOA)来调整所提出控制器的参数,同时降低积分时间平方误差(ITSE)。提出了一个新的目标函数用于调整,以生成控制信号中抖动最小的控制器。在实现所提出的控制器设计后,通过改变初始条件、干扰和模型不确定性,对这些控制器进行了比较鲁棒性研究。仿真结果表明,与其他控制器相比,NN+FOPID控制器具有最佳的轨迹跟踪性能,ITSE最小,并且对初始状态变化、外部干扰和参数不确定性具有最佳的鲁棒性。