Banke Tue G, Barria Andres
Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.
Front Synaptic Neurosci. 2020 Dec 3;12:588295. doi: 10.3389/fnsyn.2020.588295. eCollection 2020.
AMPA-type glutamate receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits and play important roles in synaptic transmission and plasticity. Here, we have investigated the development of AMPAR-mediated synaptic transmission in the hippocampus of the Fmr1 knock-out (KO) mouse, a widely used model of Fragile X syndrome (FXS). FXS is the leading monogenic cause of intellectual disability and autism spectrum disorders (ASD) and it is considered a neurodevelopmental disorder. For that reason, we investigated synaptic properties and dendritic development in animals from an early stage when synapses are starting to form up to adulthood. We found that hippocampal CA1 pyramidal neurons in the Fmr1-KO mouse exhibit a higher AMPAR-NMDAR ratio early in development but reverses to normal values after P13. This increase was accompanied by a larger presence of the GluA2-subunit in synaptic AMPARs that will lead to altered Ca permeability of AMPARs that could have a profound impact upon neural circuits, learning, and diseases. Following this, we found that young KO animals lack Long-term potentiation (LTP), a well-understood model of synaptic plasticity necessary for proper development of circuits, and exhibit an increased frequency of spontaneous miniature excitatory postsynaptic currents, a measure of synaptic density. Furthermore, morphological analysis of recorded neurons revealed altered dendritic branching in the KO group. Interestingly, all these anomalies are transitory and revert to normal values in older animals. Our data suggest that loss of FMRP during early development leads to temporary upregulation of the GluA2 subunit and this impacts synaptic plasticity and altering morphological dendritic branching.
AMPA 型谷氨酸受体(AMPARs)是由 GluA1 - 4 亚基组合构成的四聚体配体门控通道,在突触传递和可塑性中发挥重要作用。在此,我们研究了脆性 X 综合征(FXS)广泛使用的模型——Fmr1 基因敲除(KO)小鼠海马中 AMPAR 介导的突触传递的发育情况。FXS 是智力残疾和自闭症谱系障碍(ASD)的主要单基因病因,被认为是一种神经发育障碍。因此,我们研究了从突触开始形成到成年的早期阶段动物的突触特性和树突发育。我们发现,Fmr1 - KO 小鼠的海马 CA1 锥体神经元在发育早期表现出较高的 AMPAR - NMDAR 比率,但在 P13 后恢复到正常值。这种增加伴随着突触 AMPAR 中 GluA2 亚基的大量存在,这将导致 AMPAR 的 Ca 通透性改变,可能对神经回路、学习和疾病产生深远影响。在此之后,我们发现年轻的 KO 动物缺乏长时程增强(LTP),这是一种对神经回路正常发育所必需的、理解充分的突触可塑性模型,并且表现出自发性微小兴奋性突触后电流频率增加,这是突触密度的一种度量。此外,对记录神经元的形态学分析显示 KO 组树突分支发生改变。有趣的是,所有这些异常都是暂时的,在老年动物中恢复到正常值。我们的数据表明,早期发育过程中 FMRP 的缺失导致 GluA2 亚基的暂时上调,这影响了突触可塑性并改变了树突形态分支。