Suppr超能文献

基于微流控技术的新冠病毒诊断方法。

Microfluidic-based approaches for COVID-19 diagnosis.

作者信息

Mu Hsuan-Yu, Lu Yu-Lun, Hsiao Tzu-Hung, Huang Jen-Huang

机构信息

Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

Biomicrofluidics. 2020 Dec 8;14(6):061504. doi: 10.1063/5.0031406. eCollection 2020 Nov.

Abstract

Novel coronavirus, COVID-19, erupted in Wuhan, China, in 2019 and has now spread to almost all countries in the world. Until the end of November 2020, there were over 50 × 10 people diagnosed with COVID-19 worldwide and it caused at least 1 × 10 deaths. These numbers are still increasing. To control the spread of the pandemic and to choose a suitable treatment plan, a fast, accurate, effective, and ready-to-use diagnostic method has become an important prerequisite. In this Review, we introduce the principles of multiple off-site and on-site detection methods for virus diagnosis, including qPCR-based, ELISA-based, CRISPR-based methods, etc. All of these methods have been successfully implanted on the microfluidic platform for rapid screening. We also summarize currently available diagnostic methods for the detection of SARS, MERS, and COVID-19. Some of them not only can be used to analyze the SARS and MERS but also have the potential for COVID-19 detection after modifications. Finally, we hope that understanding of current microfluidic-based detection approaches can help physicians and researchers to develop advanced, rapid, and appropriate clinical detection techniques that reduce the financial expenditure of the society, accelerate the examination process, increase the accuracy of diagnosis, and eventually suppress the worldwide pandemic.

摘要

新型冠状病毒,即2019冠状病毒病,于2019年在中国武汉爆发,目前已蔓延至世界几乎所有国家。截至2020年11月底,全球有超过5000万人被诊断感染2019冠状病毒病,造成至少100万人死亡。这些数字仍在上升。为了控制疫情蔓延并选择合适的治疗方案,一种快速、准确、有效且易于使用的诊断方法已成为重要前提。在本综述中,我们介绍了多种用于病毒诊断的场外和现场检测方法的原理,包括基于定量聚合酶链反应(qPCR)、酶联免疫吸附测定(ELISA)、基于成簇规律间隔短回文重复序列(CRISPR)的方法等。所有这些方法都已成功应用于微流控平台进行快速筛查。我们还总结了目前可用于检测严重急性呼吸综合征(SARS)、中东呼吸综合征(MERS)和2019冠状病毒病的诊断方法。其中一些方法不仅可用于分析SARS和MERS,经过改进后也有检测2019冠状病毒病的潜力。最后,我们希望对当前基于微流控的检测方法的理解能够帮助医生和研究人员开发先进、快速且合适的临床检测技术,从而减少社会经济支出,加快检测过程,提高诊断准确性,并最终抑制全球疫情。

相似文献

1
Microfluidic-based approaches for COVID-19 diagnosis.
Biomicrofluidics. 2020 Dec 8;14(6):061504. doi: 10.1063/5.0031406. eCollection 2020 Nov.
2
Travel-related control measures to contain the COVID-19 pandemic: a rapid review.
Cochrane Database Syst Rev. 2020 Oct 5;10:CD013717. doi: 10.1002/14651858.CD013717.
5
Modeling and tracking Covid-19 cases using Big Data analytics on HPCC system platformm.
J Big Data. 2021;8(1):33. doi: 10.1186/s40537-021-00423-z. Epub 2021 Feb 15.
7
Highly sensitive extraction-free saliva-based molecular assay for rapid diagnosis of SARS-CoV-2.
J Clin Microbiol. 2024 Jun 12;62(6):e0060024. doi: 10.1128/jcm.00600-24. Epub 2024 May 24.
8
A collection of the novel coronavirus (COVID-19) detection assays, issues, and challenges.
Heliyon. 2021 Jun;7(6):e07247. doi: 10.1016/j.heliyon.2021.e07247. Epub 2021 Jun 6.
10
Bioconjugated Nanomaterial for Targeted Diagnosis of SARS-CoV-2.
Acc Mater Res. 2022 Jan 12;3(2):134-148. doi: 10.1021/accountsmr.1c00177. eCollection 2022 Feb 25.

引用本文的文献

1
Microfluidic detection of viruses for human health.
Biomicrofluidics. 2022 Nov 2;16(6):060401. doi: 10.1063/5.0130555. eCollection 2022 Dec.
2
Translating diagnostics and drug delivery technologies to low-resource settings.
Sci Transl Med. 2022 Oct 12;14(666):eabm1732. doi: 10.1126/scitranslmed.abm1732.
3
Microfluidics-based strategies for molecular diagnostics of infectious diseases.
Mil Med Res. 2022 Mar 18;9(1):11. doi: 10.1186/s40779-022-00374-3.
4
Powerful CRISPR-Based Biosensing Techniques and Their Integration With Microfluidic Platforms.
Front Bioeng Biotechnol. 2022 Feb 23;10:851712. doi: 10.3389/fbioe.2022.851712. eCollection 2022.
5
Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic.
Anal Bioanal Chem. 2022 Apr;414(9):2903-2934. doi: 10.1007/s00216-022-03918-7. Epub 2022 Feb 25.

本文引用的文献

1
Development of a prototype blood fractionation cartridge for plasma analysis by paper spray mass spectrometry.
Clin Mass Spectrom. 2016 Dec 9;2:18-24. doi: 10.1016/j.clinms.2016.12.002. eCollection 2016 Dec.
2
Investigation of Anti-SARS-CoV-2 IgG and IgM Antibodies in the Patients with COVID-19 by Three Different ELISA Test Kits.
SN Compr Clin Med. 2020;2(9):1323-1327. doi: 10.1007/s42399-020-00409-7. Epub 2020 Jul 23.
3
Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers.
Chem Commun (Camb). 2020 Sep 11;56(70):10235-10238. doi: 10.1039/d0cc03993d. Epub 2020 Aug 5.
4
CRISPR/Cas as a Potential Diagnosis Technique for COVID-19.
Avicenna J Med Biotechnol. 2020 Jul-Sep;12(3):201-202.
5
Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets.
Nat Microbiol. 2020 Oct;5(10):1299-1305. doi: 10.1038/s41564-020-0761-6. Epub 2020 Jul 10.
6
Microfluidic Immunoassays for Sensitive and Simultaneous Detection of IgG/IgM/Antigen of SARS-CoV-2 within 15 min.
Anal Chem. 2020 Jul 21;92(14):9454-9458. doi: 10.1021/acs.analchem.0c01635. Epub 2020 Jul 9.
8
Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA.
Cell Discov. 2020 May 28;6(1):37. doi: 10.1038/s41421-020-0175-x. eCollection 2020.
9
False Negative Tests for SARS-CoV-2 Infection - Challenges and Implications.
N Engl J Med. 2020 Aug 6;383(6):e38. doi: 10.1056/NEJMp2015897. Epub 2020 Jun 5.
10
Diagnostic performance of seven rapid IgG/IgM antibody tests and the Euroimmun IgA/IgG ELISA in COVID-19 patients.
Clin Microbiol Infect. 2020 Aug;26(8):1082-1087. doi: 10.1016/j.cmi.2020.05.023. Epub 2020 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验