Reimann Hendrik, Ramadan Rachid, Fettrow Tyler, Hafer Jocelyn F, Geyer Hartmut, Jeka John J
Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States.
Institute for Neural Computation, Ruhr University, Bochum, Germany.
Front Sports Act Living. 2020 Jul 31;2:94. doi: 10.3389/fspor.2020.00094. eCollection 2020.
Maintaining balance during walking is a continuous sensorimotor control problem. Throughout the movement, the central nervous system has to collect sensory data about the current state of the body in space, use this information to detect possible threats to balance and adapt the movement pattern to ensure stability. Failure of this sensorimotor loop can lead to dire consequences in the form of falls, injury and death. Such failures tend to become more prevalent as people get older. While research has established a number of factors associated with higher risk of falls, we know relatively little about age-related changes of the underlying sensorimotor control loop and how such changes are related to empirically established risk factors. This paper approaches the problem of age-related fall risk from a neural control perspective. We begin by summarizing recent empirical findings about the neural control laws mapping sensory input to motor output for balance control during walking. These findings were established in young, neurotypical study populations and establish a baseline of sensorimotor control of balance. We then review correlates for deteriorating balance control in older adults, of muscle weakness, slow walking, cognitive decline, and increased visual dependency. While empirical associations between these factors and fall risk have been established reasonably well, we know relatively little about the underlying causal relationships. Establishing such causal relationships is hard, because the different factors all co-vary with age and are difficult to isolate empirically. One option to analyze the role of an individual factor for balance control is to use computational models of walking comprising all levels of the sensorimotor control loop. We introduce one such model that generates walking movement patterns from a short list of spinal reflex modules with limited supraspinal modulation for balance. We show how this model can be used to simulate empirical studies, and how comparison between the model and empirical results can indicate gaps in our current understanding of balance control. We also show how different aspects of aging can be added to this model to study their effect on balance control in isolation.
行走过程中保持平衡是一个持续的感觉运动控制问题。在整个运动过程中,中枢神经系统必须收集有关身体在空间中当前状态的感觉数据,利用这些信息检测可能对平衡造成的威胁,并调整运动模式以确保稳定性。这种感觉运动循环的失效可能会导致跌倒、受伤甚至死亡等严重后果。随着人们年龄的增长,此类失效情况往往会变得更加普遍。虽然研究已经确定了一些与跌倒风险较高相关的因素,但我们对潜在的感觉运动控制循环随年龄的变化以及这些变化与经验确定的风险因素之间的关系了解相对较少。本文从神经控制的角度探讨与年龄相关的跌倒风险问题。我们首先总结最近关于在行走过程中平衡控制时将感觉输入映射到运动输出的神经控制规律的实证研究结果。这些结果是在年轻的、神经功能正常的研究人群中得出的,为平衡的感觉运动控制建立了一个基线。然后,我们回顾了老年人平衡控制能力下降与肌肉无力、行走缓慢、认知能力下降以及视觉依赖增加之间的相关性。虽然这些因素与跌倒风险之间的实证关联已经得到了较好的确立,但我们对潜在的因果关系了解相对较少。确定这种因果关系很困难,因为不同因素都与年龄共同变化,并且很难通过实证进行分离。分析单个因素对平衡控制作用的一种方法是使用包含感觉运动控制循环各个层面的行走计算模型。我们介绍了这样一种模型,它从一小部分具有有限脊髓上调制以实现平衡的脊髓反射模块生成行走运动模式。我们展示了如何使用这个模型来模拟实证研究,以及模型与实证结果之间的比较如何能够揭示我们当前对平衡控制理解中的差距。我们还展示了如何将衰老的不同方面添加到这个模型中,以单独研究它们对平衡控制的影响。