Suppr超能文献

负压在严重失血性休克期间增加微血管灌注。

Negative pressure increases microvascular perfusion during severe hemorrhagic shock.

机构信息

Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America.

Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America.

出版信息

Microvasc Res. 2021 Mar;134:104125. doi: 10.1016/j.mvr.2020.104125. Epub 2020 Dec 18.

Abstract

Hemorrhagic shock (HS) is a severe life-threatening condition characterized by loss of blood volume and a lack of oxygen (O) delivery to tissues. The objective of this study was to examine the impact of manipulating Starling forces in the microcirculation during HS to increase microvascular perfusion without restoring blood volume or increasing O carrying capacity. To decrease interstitial tissue pressure, we developed a non-contact system to locally apply negative pressure and manipulate the pressure balance in capillaries, while allowing for visualization of the microcirculation. Golden Syrian hamsters were instrumented with dorsal window chambers and subjected to a controlled hemorrhaged of 50% of the animal's blood volume without any fluid resuscitation. A negative pressure chamber was attached to the dorsal window chamber and a constant negative pressure was applied. Hemodynamic parameters (including microvascular diameter, blood flow, and functional capillary density [FCD]) were measured before and during the four hours following the hemorrhage, with and without applied negative pressure. Blood flow significantly increased in arterioles during negative pressure. The increase in flow through arterioles also improved microvascular perfusion as reflected by increased FCD. These results indicate that negative pressure increases flow in the microcirculation when fluid resuscitation is not available, thus restoring blood flow, oxygen delivery, and preventing the accumulation of metabolic waste. Applying negative pressure might allow for control of microvascular blood flow and oxygen delivery to specific tissue areas.

摘要

失血性休克(HS)是一种严重的危及生命的病症,其特征是血液容量的丧失和组织供氧不足。本研究的目的是研究在 HS 期间通过调节微循环中的 Starling 力来增加微血管灌注而不恢复血容量或增加携氧能力的影响。为了降低间质组织压力,我们开发了一种非接触式系统,通过局部施加负压并调节毛细血管中的压力平衡,同时允许可视化微循环。金叙利亚仓鼠被植入背窗室,并接受 50%的动物血液量的控制性出血,而不进行任何液体复苏。将负压室连接到背窗室,并施加恒定的负压。在出血前和出血后四个小时内,测量血流动力学参数(包括微血管直径、血流和功能性毛细血管密度[FCD]),并在有和没有施加负压的情况下进行测量。在负压下,小动脉中的血流显著增加。通过小动脉的流量增加也改善了微血管灌注,表现为 FCD 的增加。这些结果表明,在没有液体复苏的情况下,负压可以增加微循环中的血流,从而恢复血流、氧输送,并防止代谢废物的积累。施加负压可能允许控制特定组织区域的微血管血流和氧输送。

相似文献

1
Negative pressure increases microvascular perfusion during severe hemorrhagic shock.
Microvasc Res. 2021 Mar;134:104125. doi: 10.1016/j.mvr.2020.104125. Epub 2020 Dec 18.
3
Dissociation between macro- and microvascular parameters in the early phase of hemorrhagic shock.
Microvasc Res. 2019 Nov;126:103909. doi: 10.1016/j.mvr.2019.103909. Epub 2019 Jul 31.
4
Resuscitation from hemorrhagic shock using polymerized hemoglobin compared to blood.
Am J Emerg Med. 2014 Mar;32(3):248-55. doi: 10.1016/j.ajem.2013.11.045. Epub 2013 Dec 7.
6
Systemic and microcirculatory effects of autologous whole blood resuscitation in severe hemorrhagic shock.
Am J Physiol. 1999 Jun;276(6):H2035-43. doi: 10.1152/ajpheart.1999.276.6.H2035.
8
Fluid resuscitation with O2 vs. non-O2 carriers after 2 h of hemorrhagic shock in conscious hamsters.
Am J Physiol. 1997 Jan;272(1 Pt 2):H525-37. doi: 10.1152/ajpheart.1997.272.1.H525.
9
Transfusion restores blood viscosity and reinstates microvascular conditions from hemorrhagic shock independent of oxygen carrying capacity.
Resuscitation. 2007 Oct;75(1):124-34. doi: 10.1016/j.resuscitation.2007.03.010. Epub 2007 May 3.
10
Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity?
Shock. 2007 Apr;27(4):380-9. doi: 10.1097/01.shk.0000239782.71516.ba.

本文引用的文献

1
A Review on Microvascular Hemodynamics: The Control of Blood Flow Distribution and Tissue Oxygenation.
Crit Care Clin. 2020 Apr;36(2):293-305. doi: 10.1016/j.ccc.2019.12.011. Epub 2020 Feb 10.
2
Reactive hyperemia: a review of methods, mechanisms, and considerations.
Am J Physiol Regul Integr Comp Physiol. 2020 Mar 1;318(3):R605-R618. doi: 10.1152/ajpregu.00339.2019. Epub 2020 Feb 5.
3
Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight.
JAMA Netw Open. 2019 Nov 1;2(11):e1915011. doi: 10.1001/jamanetworkopen.2019.15011.
4
Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt.
J Appl Physiol (1985). 2017 Jul 1;123(1):260-266. doi: 10.1152/japplphysiol.00091.2017. Epub 2017 May 11.
5
History of cupping (Hijama): a narrative review of literature.
J Integr Med. 2017 May;15(3):172-181. doi: 10.1016/S2095-4964(17)60339-X.
6
Historical Review of Lower Body Negative Pressure Research in Space Medicine.
Aerosp Med Hum Perform. 2015 Jul;86(7):633-40. doi: 10.3357/AMHP.4246.2015.
7
Microcirculatory alterations in traumatic hemorrhagic shock.
Crit Care Med. 2014 Jun;42(6):1433-41. doi: 10.1097/CCM.0000000000000223.
8
Cell biology of ischemia/reperfusion injury.
Int Rev Cell Mol Biol. 2012;298:229-317. doi: 10.1016/B978-0-12-394309-5.00006-7.
9
On the Absorption of Fluids from the Connective Tissue Spaces.
J Physiol. 1896 May 5;19(4):312-26. doi: 10.1113/jphysiol.1896.sp000596.
10
Use of tissue ultrafiltration for treatment of compartment syndrome: a pilot study using porcine hindlimbs.
J Orthop Trauma. 2005 Apr;19(4):267-75. doi: 10.1097/01.bot.0000155308.20133.71.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验