King Phil D C, Picozzi Silvia, Egdell Russell G, Panaccione Giancarlo
SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom.
Consiglio Nazionale delle Ricerche, CNR-SPIN, Via dei Vestini 31, Chieti 66100, Italy.
Chem Rev. 2021 Mar 10;121(5):2816-2856. doi: 10.1021/acs.chemrev.0c00616. Epub 2020 Dec 21.
The role of X-ray based electron spectroscopies in determining chemical, electronic, and magnetic properties of solids has been well-known for several decades. A powerful approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and angle of photoelectrons emitted from a sample surface are measured. This provides a direct measurement of the electronic band structure of crystalline solids. Moreover, it yields powerful insights into the electronic interactions at play within a material and into the control of spin, charge, and orbital degrees of freedom, central pillars of future solid state science. With strong recent focus on research of lower-dimensional materials and modified electronic behavior at surfaces and interfaces, angle-resolved photoelectron spectroscopy has become a core technique in the study of quantum materials. In this review, we provide an introduction to the technique. Through examples from several topical materials systems, including topological insulators, transition metal dichalcogenides, and transition metal oxides, we highlight the types of information which can be obtained. We show how the combination of angle, spin, time, and depth-resolved experiments are able to reveal "hidden" spectral features, connected to semiconducting, metallic and magnetic properties of solids, as well as underlining the importance of dimensional effects in quantum materials.
基于X射线的电子能谱在确定固体的化学、电子和磁性性质方面的作用,几十年来一直广为人知。一种强大的方法是角分辨光电子能谱,通过它可以测量从样品表面发射的光电子的动能和角度。这提供了对晶体固体电子能带结构的直接测量。此外,它还能深入了解材料内部起作用的电子相互作用,以及对自旋、电荷和轨道自由度的控制,而这些是未来固态科学的核心支柱。随着近期对低维材料以及表面和界面处改性电子行为研究的强烈关注,角分辨光电子能谱已成为量子材料研究中的一项核心技术。在这篇综述中,我们对该技术进行了介绍。通过来自几个热门材料体系的例子,包括拓扑绝缘体、过渡金属二硫属化物和过渡金属氧化物,我们突出了可以获得的信息类型。我们展示了角分辨、自旋分辨、时间分辨和深度分辨实验的结合如何能够揭示与固体的半导体、金属和磁性性质相关的“隐藏”光谱特征,同时强调了维度效应在量子材料中的重要性。