Altenburger Björn, Fritzsche Joachim, Langhammer Christoph
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
ACS Nano. 2025 Jan 21;19(2):2857-2869. doi: 10.1021/acsnano.4c15878. Epub 2025 Jan 7.
UV-vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10 probed molecules. The connection of the nanochannel to a microfluidic in-and-outlet system enables such measurements in continuous flow conditions, and the integrated online optical reference system ensures their long-term stability. On the examples of the nonabsorbing solutes NaCl and HO and the dyes Brilliant Blue, Allura Red, and Fluorescein, we demonstrate that spectral fingerprints can be obtained with good accuracy and that solute concentrations inside the nanochannel can be determined based on NSS-spectra. Furthermore, by applying a reverse Kramers-Kronig transformation to NSS-spectra, we show that the molar extinction coefficient of the dye solutes can be extracted in good agreement with the literature values. These results thus advertise NSS as a versatile tool for the spectroscopic analysis of solutes in situations where nanoscopic sample volumes, as well as continuous flow measurements are critical, e.g., in single particle catalysis or nanoscale flow cytometry.
紫外可见光谱法是分析化学中的一项主力技术,在生命科学、有机合成以及光催化等能源技术领域都有应用。在其传统的比色皿应用中,它需要毫升级别的样品体积。在此,我们展示了纳米流体散射光谱法(NSS),该方法以光谱分辨的方式测量从单个纳米通道散射的可见光,如何将样品体积减少到阿托升级别,用于毫摩尔浓度范围的溶质,这相当于仅有10个被探测分子。纳米通道与微流体进出系统的连接使得能够在连续流动条件下进行此类测量,并且集成的在线光学参考系统确保了它们的长期稳定性。以非吸收性溶质氯化钠和水以及染料亮蓝、诱惑红和荧光素为例,我们证明可以高精度地获得光谱指纹图谱,并且可以基于NSS光谱确定纳米通道内的溶质浓度。此外,通过对NSS光谱应用逆克莱默斯 - 克朗尼格变换,我们表明染料溶质的摩尔消光系数可以被提取出来,与文献值吻合良好。因此,这些结果表明NSS是一种通用工具,可用于在纳米级样品体积以及连续流动测量至关重要的情况下对溶质进行光谱分析,例如在单颗粒催化或纳米级流式细胞术中。