Suppr超能文献

解析 2D 和 3D 细胞组合中的集体运动和局部重排。

Disentangling collective motion and local rearrangements in 2D and 3D cell assemblies.

机构信息

Università degli Studi di Milano, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, 20090 Segrate, Italy.

出版信息

Soft Matter. 2021 Apr 7;17(13):3550-3559. doi: 10.1039/d0sm01837f. Epub 2020 Dec 21.

Abstract

The accurate quantification of cellular motility and of the structural changes occurring in multicellular aggregates is critical in describing and understanding key biological processes, such as wound repair, embryogenesis and cancer invasion. Current methods based on cell tracking or velocimetry either suffer from limited spatial resolution or are challenging and time-consuming, especially for three-dimensional (3D) cell assemblies. Here we propose a conceptually simple, robust and tracking-free approach for the quantification of the dynamical activity of cells via a two-step procedure. We first characterise the global features of the collective cell migration by registering the temporal stack of the acquired images. As a second step, a map of the local cell motility is obtained by performing a mean squared amplitude analysis of the intensity fluctuations occurring when two registered image frames acquired at different times are subtracted. We successfully apply our approach to cell monolayers undergoing a jamming transition, as well as to monolayers and 3D aggregates that exhibit a cooperative unjamming-via-flocking transition. Our approach is capable of disentangling very efficiently and of assessing accurately the global and local contributions to cell motility.

摘要

细胞运动的精确量化和多细胞聚集体中发生的结构变化对于描述和理解关键的生物学过程至关重要,例如伤口修复、胚胎发生和癌症侵袭。目前基于细胞跟踪或速度测量的方法要么受到空间分辨率的限制,要么具有挑战性且耗时,特别是对于三维(3D)细胞组装。在这里,我们提出了一种概念简单、稳健且无需跟踪的方法,通过两步程序来量化细胞的动力学活性。我们首先通过注册获取的图像的时间堆栈来描述集体细胞迁移的全局特征。作为第二步,通过对在不同时间获取的两个已注册图像帧相减时发生的强度波动进行均方幅度分析,获得局部细胞迁移的图谱。我们成功地将我们的方法应用于经历阻塞转变的细胞单层,以及表现出协作去阻塞-通过群体转变的单层和 3D 聚集体。我们的方法能够非常有效地解缠并准确评估细胞迁移的全局和局部贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验