Department of Statistics, London School of Economics and Political Science, London, UK.
Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.
Psychometrika. 2020 Dec;85(4):996-1012. doi: 10.1007/s11336-020-09735-0. Epub 2020 Dec 21.
The likelihood ratio test (LRT) is widely used for comparing the relative fit of nested latent variable models. Following Wilks' theorem, the LRT is conducted by comparing the LRT statistic with its asymptotic distribution under the restricted model, a [Formula: see text] distribution with degrees of freedom equal to the difference in the number of free parameters between the two nested models under comparison. For models with latent variables such as factor analysis, structural equation models and random effects models, however, it is often found that the [Formula: see text] approximation does not hold. In this note, we show how the regularity conditions of Wilks' theorem may be violated using three examples of models with latent variables. In addition, a more general theory for LRT is given that provides the correct asymptotic theory for these LRTs. This general theory was first established in Chernoff (J R Stat Soc Ser B (Methodol) 45:404-413, 1954) and discussed in both van der Vaart (Asymptotic statistics, Cambridge, Cambridge University Press, 2000) and Drton (Ann Stat 37:979-1012, 2009), but it does not seem to have received enough attention. We illustrate this general theory with the three examples.
似然比检验(LRT)广泛用于比较嵌套潜在变量模型的相对拟合度。根据威尔克斯定理,LRT 通过将 LRT 统计量与受限模型下的渐近分布进行比较来进行,受限模型是一个自由度为两个比较的嵌套模型之间自由参数数量差异的[公式:见文本]分布。然而,对于具有潜在变量的模型,如因子分析、结构方程模型和随机效应模型,通常发现[公式:见文本]逼近并不成立。在本说明中,我们通过三个具有潜在变量的模型示例展示了威尔克斯定理的正则条件可能如何被违反。此外,还给出了更一般的 LRT 理论,为这些 LRT 提供了正确的渐近理论。这个一般理论最初是由切尔诺夫(Chernoff)(J R Stat Soc Ser B(Methodol)45:404-413, 1954)建立的,并在范德瓦尔(van der Vaart)(渐近统计,剑桥,剑桥大学出版社,2000 年)和德顿(Drton)(Ann Stat 37:979-1012, 2009 年)中进行了讨论,但似乎没有得到足够的重视。我们用这三个例子来说明这个一般理论。