Srivastava Ruby
Bioinformatics, Centre for Cellular and Molecular Biology-CSIR, Hyderabad, India.
Front Pharmacol. 2025 Apr 30;16:1591696. doi: 10.3389/fphar.2025.1591696. eCollection 2025.
Multiomics data integration approaches offer a comprehensive functional understanding of biological systems, with significant applications in disease therapeutics. However, the quantitative integration of multiomics data presents a complex challenge, requiring highly specialized computational methods. By providing deep insights into disease-associated molecular mechanisms, multiomics facilitates precision medicine by accounting for individual omics profiles, enabling early disease detection and prevention, aiding biomarker discovery for diagnosis, prognosis, and treatment monitoring, and identifying molecular targets for innovative drug development or the repurposing of existing therapies. AI-driven bioinformatics plays a crucial role in multiomics by computing scores to prioritize available drugs, assisting clinicians in selecting optimal treatments. This review will explain the potential of AI and multiomics data integration for disease understanding and therapeutics. It highlight the challenges in quantitative integration of diverse omics data and clinical workflows involving AI in cancer genomics, addressing the ethical and privacy concerns related to AI-driven applications in oncology. The scope of this text is broad yet focused, providing readers with a comprehensive overview of how AI-powered bioinformatics and integrative multiomics approaches are transforming precision oncology. Understanding bioinformatics in Genomics, it explore the integrative multiomics strategies for drug selection, genome profiling and tumor clonality analysis with clinical application of drug prioritization tools, addressing the technical, ethical, and practical hurdles in deploying AI-driven genomics tools.
多组学数据整合方法能够全面地从功能上理解生物系统,在疾病治疗中具有重要应用。然而,多组学数据的定量整合面临着复杂的挑战,需要高度专业化的计算方法。通过深入洞察与疾病相关的分子机制,多组学考虑个体组学特征,推动精准医学发展,实现疾病的早期检测与预防,助力生物标志物的发现用于诊断、预后评估及治疗监测,并识别创新药物研发或现有疗法重新利用的分子靶点。人工智能驱动的生物信息学在多组学中发挥着关键作用,通过计算得分对可用药物进行优先级排序,协助临床医生选择最佳治疗方案。本综述将阐述人工智能和多组学数据整合在疾病理解与治疗方面的潜力。它突出了在癌症基因组学中整合不同组学数据和涉及人工智能的临床工作流程时在定量整合方面所面临的挑战,探讨了与人工智能在肿瘤学中的应用相关的伦理和隐私问题。本文的范围广泛但重点突出,为读者全面概述了人工智能驱动的生物信息学和整合多组学方法如何改变精准肿瘤学。理解基因组学中的生物信息学,它探索了用于药物选择、基因组分析和肿瘤克隆性分析的整合多组学策略,以及药物优先级排序工具的临床应用,解决了部署人工智能驱动的基因组学工具时的技术、伦理和实际障碍。