IEEE Trans Med Imaging. 2021 Oct;40(10):2897-2910. doi: 10.1109/TMI.2020.3046334. Epub 2021 Sep 30.
This paper addresses digital staining and classification of the unstained white blood cell images obtained with a differential contrast microscope. We have data coming from multiple domains that are partially labeled and partially matching across the domains. Using unstained images removes time-consuming staining procedures and could facilitate and automatize comprehensive diagnostics. To this aim, we propose a method that translates unstained images to realistically looking stained images preserving the inter-cellular structures, crucial for the medical experts to perform classification. We achieve better structure preservation by adding auxiliary tasks of segmentation and direct reconstruction. Segmentation enforces that the network learns to generate correct nucleus and cytoplasm shape, while direct reconstruction enforces reliable translation between the matching images across domains. Besides, we build a robust domain agnostic latent space by injecting the target domain label directly to the generator, i.e., bypassing the encoder. It allows the encoder to extract features independently of the target domain and enables an automated domain invariant classification of the white blood cells. We validated our method on a large dataset composed of leukocytes of 24 patients, achieving state-of-the-art performance on both digital staining and classification tasks.
本文针对未经染色的白细胞图像进行数字染色和分类,这些图像是通过相差显微镜获得的。我们拥有来自多个领域的数据,这些数据在部分领域是有标签的,部分领域是跨领域匹配的。使用未经染色的图像可以省去耗时的染色过程,并有助于实现全面诊断的自动化。为此,我们提出了一种方法,将未经染色的图像转换为逼真的染色图像,同时保留对医学专家进行分类至关重要的细胞间结构。通过添加分割和直接重建辅助任务,我们实现了更好的结构保留。分割强制网络学习生成正确的细胞核和细胞质形状,而直接重建强制在跨领域的匹配图像之间进行可靠的转换。此外,我们通过将目标域标签直接注入生成器来构建稳健的、与域无关的潜在空间,即绕过编码器。这使得编码器能够独立于目标域提取特征,并能够对白细胞进行自动的、与域无关的分类。我们在一个由 24 名患者的白细胞组成的大型数据集上验证了我们的方法,在数字染色和分类任务上都取得了最先进的性能。