Suppr超能文献

基于无标记成像流式细胞术的血液诊断的弱监督深度学习方法。

A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics.

机构信息

Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.

出版信息

Cell Rep Methods. 2021 Oct 25;1(6):100094. doi: 10.1016/j.crmeth.2021.100094.

Abstract

The application of machine learning approaches to imaging flow cytometry (IFC) data has the potential to transform the diagnosis of hematological diseases. However, the need for manually labeled single-cell images for machine learning model training has severely limited its clinical application. To address this, we present iCellCnn, a weakly supervised deep learning approach for label-free IFC-based blood diagnostics. We demonstrate the capability of iCellCnn to achieve diagnosis of Sézary syndrome (SS) from patient samples on the basis of bright-field IFC images of T cells obtained after fluorescence-activated cell sorting of human peripheral blood mononuclear cell specimens. With a sample size of four healthy donors and five SS patients, iCellCnn achieved a 100% classification accuracy. As iCellCnn is not restricted to the diagnosis of SS, we expect such weakly supervised approaches to tap the diagnostic potential of IFC by providing automatic data-driven diagnosis of diseases with so-far unknown morphological manifestations.

摘要

机器学习方法在成像流式细胞术 (IFC) 数据中的应用具有改变血液疾病诊断的潜力。然而,机器学习模型训练需要手动标记的单细胞图像,这严重限制了其临床应用。为了解决这个问题,我们提出了 iCellCnn,这是一种基于无标记 IFC 的血液诊断的弱监督深度学习方法。我们证明了 iCellCnn 能够基于从人外周血单核细胞标本的荧光激活细胞分选后获得的 T 细胞的明场 IFC 图像,对 Sézary 综合征 (SS) 患者样本进行诊断。在四个健康供体和五个 SS 患者的样本大小下,iCellCnn 实现了 100%的分类准确率。由于 iCellCnn 不受 SS 诊断的限制,我们期望这种弱监督方法能够通过自动数据驱动的诊断来挖掘 IFC 的诊断潜力,从而对目前尚不清楚形态表现的疾病进行诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd6c/9017143/55e7da58210c/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验