Department of Radiation Oncology, Tumour Pathophysiology Group, University Medical Centre, University of Mainz, Germany.
Department of Radiation Oncology, University Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany.
J Physiol. 2021 Mar;599(6):1745-1757. doi: 10.1113/JP278810. Epub 2021 Jan 4.
Contrary to Warburg's original thesis, accelerated aerobic glycolysis is not a primary, permanent and universal consequence of dysfunctional or impaired mitochondria compensating for poor ATP yield per mole of glucose. Instead, in most tumours the Warburg effect is an essential part of a 'selfish' metabolic reprogramming, which results from the interplay between (normoxic/hypoxic) hypoxia-inducible factor-1 (HIF-1) overexpression, oncogene activation (cMyc, Ras), loss of function of tumour suppressors (mutant p53, mutant phosphatase and tensin homologue (PTEN), microRNAs and sirtuins with suppressor functions), activated (PI3K-Akt-mTORC1, Ras-Raf-MEK-ERK-cMyc, Jak-Stat3) or deactivated (LKB1-AMPK) signalling pathways, components of the tumour microenvironment, and HIF-1 cooperation with epigenetic mechanisms. Molecular and functional processes of the Warburg effect include: (a) considerable acceleration of glycolytic fluxes; (b) adequate ATP generation per unit time to maintain energy homeostasis and electrochemical gradients; (c) backup and diversion of glycolytic intermediates facilitating the biosynthesis of nucleotides, non-essential amino acids, lipids and hexosamines; (d) inhibition of pyruvate entry into mitochondria; (e) excessive formation and accumulation of lactate, which stimulates tumour growth and suppression of anti-tumour immunity - in addition, lactate can serve as an energy source for normoxic cancer cells and drives malignant progression and resistances to conventional therapies; (f) cytosolic lactate being mainly exported through upregulated lactate-proton symporters (MCT4), working together with other H transporters, and carbonic anhydrases (CAII, CAIX), which hydrate CO from oxidative metabolism to form H and bicarbonate; (g) these proton export mechanisms, in concert with poor vascular drainage, being responsible for extracellular acidification, driving malignant progression and resistance to conventional therapies; (h) maintenance of the cellular redox homeostasis and low reactive oxygen species (ROS) formation; and (i) HIF-1 overexpression, mutant p53 and mutant PTEN, which inhibit mitochondrial biogenesis and functions, negatively impacting cellular respiration rate. The glycolytic switch is an early event in oncogenesis and primarily supports cell survival. All in all, the Warburg effect, i.e. aerobic glycolysis in the presence of oxygen and - in principle - functioning mitochondria, constitutes a major driver of the cancer progression machinery, resistance to conventional therapies, and poor patient outcome. However, as evidenced during the last two decades, in a minority of tumours primary mitochondrial defects can play a key role promoting the Warburg effect and tumour progression due to mutations in some Krebs cycle enzymes and mitochondrial ROS overproduction.
与 Warburg 的原始理论相反,有氧糖酵解的加速并不是功能失调或受损线粒体补偿每摩尔葡萄糖产生的不良 ATP 产量的主要、永久和普遍后果。相反,在大多数肿瘤中,Warburg 效应是一种“自私”代谢重编程的重要组成部分,这是由(常氧/缺氧)缺氧诱导因子-1 (HIF-1) 过表达、癌基因激活(cMyc、Ras)、肿瘤抑制因子功能丧失(突变 p53、突变磷酸酶和张力蛋白同源物 (PTEN)、具有抑制功能的 microRNAs 和 sirtuins)、激活(PI3K-Akt-mTORC1、Ras-Raf-MEK-ERK-cMyc、Jak-Stat3)或失活(LKB1-AMPK)信号通路、肿瘤微环境的组成部分以及 HIF-1 与表观遗传机制的合作之间的相互作用所致。Warburg 效应的分子和功能过程包括:(a) 糖酵解通量的大幅加速;(b) 单位时间内产生足够的 ATP 以维持能量平衡和电化学梯度;(c) 糖酵解中间产物的备份和分流,有利于核苷酸、非必需氨基酸、脂质和己糖胺的生物合成;(d) 抑制丙酮酸进入线粒体;(e) 乳酸的过度形成和积累,刺激肿瘤生长并抑制抗肿瘤免疫——此外,乳酸可以作为常氧癌细胞的能量来源,并推动恶性进展和对常规治疗的耐药性;(f) 胞质中的乳酸主要通过上调的乳酸-质子同向转运体 (MCT4) 输出,与其他 H 转运体和碳酸酐酶 (CAII、CAIX) 一起工作,它们将氧化代谢中的 CO 水合形成 H 和碳酸氢盐;(g) 这些质子外排机制与不良的血管引流一起,导致细胞外酸化,推动恶性进展和对常规治疗的耐药性;(h) 维持细胞氧化还原稳态和低活性氧 (ROS) 形成;(i) HIF-1 过表达、突变 p53 和突变 PTEN,抑制线粒体生物发生和功能,负向影响细胞呼吸率。糖酵解开关是致癌作用的早期事件,主要支持细胞存活。总而言之,Warburg 效应,即在有氧条件下和(原则上)功能正常的线粒体存在的情况下进行的有氧糖酵解,是癌症进展机制、对常规治疗的耐药性和患者预后不良的主要驱动因素。然而,正如过去二十年所证明的那样,在少数肿瘤中,由于一些克雷布斯循环酶的突变和线粒体 ROS 的过度产生,原发性线粒体缺陷可能在促进 Warburg 效应和肿瘤进展方面发挥关键作用。
Adv Exp Med Biol. 2021
Int J Radiat Biol. 2019-3-22
Cell Prolif. 2020-10-7
World J Clin Oncol. 2025-8-24
Mol Biol Rep. 2025-9-3
Cell Death Discov. 2025-8-19
Transl Lung Cancer Res. 2025-7-31
J Transl Med. 2025-8-12
Front Cell Dev Biol. 2025-7-23