Suppr超能文献

肿瘤微环境与乳腺癌的代谢协同作用:线粒体燃料和功能的关键重要性。

Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.

机构信息

Thomas Jefferson University, Kimmel Cancer Center, Philadelphia, PA.

University of Manchester, Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Manchester, United Kingdom.

出版信息

Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5.

Abstract

Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression.

摘要

糖酵解基质细胞(瓦博格效应)与氧化癌细胞之间的代谢协同作用或代谢偶联存在于人类乳腺癌中,并促进肿瘤生长。瓦博格效应或有氧糖酵解是指葡萄糖分解为乳酸以获得三磷酸腺苷(ATP)。本综述总结了关于这种基质代谢表型的主要发现,以及相关的信号通路,以及氧化应激和自噬的关键作用,所有这些都促进了癌细线粒体代谢和肿瘤生长。基质细胞中窖蛋白 1(Cav-1)的缺失和单羧酸转运蛋白 4(MCT4)的上调是基质细胞与癌细胞之间瓦博格效应和代谢协同作用的新型标志物。MCT4 和 Cav-1 也是乳腺癌的预后生物标志物。活性氧(ROS)是基质瓦博格效应的关键介质。高 ROS 还有利于癌细胞线粒体代谢和肿瘤发生,抗氧化剂可以逆转这种改变的基质和癌细胞代谢。在没有缺氧的情况下,伴有糖酵解和低线粒体代谢的假性缺氧状态是乳腺癌的一个共同特征。高 ROS 诱导基质细胞中 Cav-1 的缺失,足以产生假性缺氧状态。基质细胞中 Cav-1 的缺失通过 HIF-1α 的稳定和 MCT4 的上调来驱动糖酵解和乳酸外排。失去 Cav-1 的基质细胞也表现出代谢分解表型,并增强巨自噬。这种基质细胞的分解代谢状态是由缺氧诱导因子(HIF)-1α、核因子 kappaB(NFκB)和 JNK 激活以及高 ROS 产生驱动的。基质细胞中的正反馈回路调节假性缺氧和代谢协同作用,其关键元素包括 Cav-1、MCT4、HIF-1α、NFκB 和 ROS。癌细胞与肿瘤远处器官的细胞之间也可能发生代谢协同作用。癌症恶病质是由于肌细胞和脂肪细胞中严重的机体代谢失调引起的,与基质-癌细胞代谢协同作用有相似之处。总之,当乳腺癌细胞诱导富含营养的微环境促进肿瘤生长时,就会发生代谢协同作用。肿瘤代谢协同作用是一个多步骤的过程,由于 ROS 的产生,以及自噬、线粒体自噬和糖酵解引起的分解代谢。研究上皮-基质相互作用和代谢协同作用对于更好地了解癌症的生态以及不同细胞类型在肿瘤进展中的代谢作用非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验