Mrovec Martin, Berger J A
Department of Applied Mathematics, VŠB - Technical University of Ostrava, Ostrava, Czech Republic.
IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic.
J Comput Chem. 2021 Mar 15;42(7):492-504. doi: 10.1002/jcc.26472. Epub 2020 Dec 21.
A local optimization algorithm for solving the Kohn-Sham equations is presented. It is based on a direct minimization of the energy functional under the equality constraints representing the Grassmann Manifold. The algorithm does not require an eigendecomposition, which may be advantageous in large-scale computations. It is optimized to reduce the number of Kohn-Sham matrix evaluations to one per iteration to be competitive with standard self-consistent field (SCF) approach accelerated by direct inversion of the iterative subspace (DIIS). Numerical experiments include a comparison of the algorithm with DIIS. A high reliability of the algorithm is observed in configurations where SCF iterations fail to converge or find a wrong solution corresponding to a stationary point different from the global minimum. The local optimization algorithm itself does not guarantee that the found minimum is global. However, a randomization of the initial approximation shows a convergence to the right minimum in the vast majority of cases.
提出了一种用于求解科恩-沈方程的局部优化算法。它基于在表示格拉斯曼流形的等式约束下对能量泛函进行直接最小化。该算法不需要特征值分解,这在大规模计算中可能具有优势。它经过优化,将每次迭代中科恩-沈矩阵的评估次数减少到一次,以便与通过迭代子空间直接反演(DIIS)加速的标准自洽场(SCF)方法竞争。数值实验包括将该算法与DIIS进行比较。在SCF迭代无法收敛或找到与不同于全局最小值的驻点对应的错误解的配置中,观察到该算法具有很高的可靠性。局部优化算法本身并不能保证找到的最小值是全局的。然而,初始近似的随机化在绝大多数情况下显示出收敛到正确的最小值。