College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China.
College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China.
Chemosphere. 2021 Mar;267:129287. doi: 10.1016/j.chemosphere.2020.129287. Epub 2020 Dec 11.
Catalytic activation of different oxidants including peroxymonosulfate (PMS), peroxydisulfate (PDS), hydrogen peroxide (HO) and ozone (O) by MnO for degradation of sulfachloropyridazine (SCP) was investigated and the effects of different crystalline phases of MnO including nanowire α-MnO, nanorod β-MnO, nanofiber γ-MnO, and nanosphere δ-MnO on catalytic ozonation of SCP were also studied. The SCP degradation and total organic carbon removal indicated that the oxidation efficiency of the peroxide oxidants followed an order of O/MnO > PMS/MnO > PDS/MnO > HO/MnO. In catalytic ozonation, SCP degradation rate constants of different MnO phases followed an order of δ-MnO > α-MnO > γ-MnO> β-MnO. Electron paramagnetic resonance (EPR) suggested that hydroxyl radicals (·OH) and singlet oxygen (O) might be more significant for SCP degradation than sulfate (SO) and superoxide (·O) radicals. Radical competition experiments demonstrated that O and ·OH contributed to 63.16% and 28.07%, respectively, for the catalytic ozonation of SCP. It was also found that more oxygen vacancies, specific surface area and exposure of MnO edges could facilitate the activation of O for O and ·OH productions and SCP degradation. The degradation pathways of SCP could mainly follow the cleavage of S-C or S-N bond and dechlorination, accompanied by hydroxylation and oxidation.
研究了 MnO 对过一硫酸盐(PMS)、过二硫酸盐(PDS)、过氧化氢(HO)和臭氧(O)等不同氧化剂的催化活化作用,以及 MnO 的不同晶相(纳米线α-MnO、纳米棒β-MnO、纳米纤维γ-MnO 和纳米球δ-MnO)对催化臭氧化降解磺胺氯哒嗪(SCP)的影响。SCP 的降解和总有机碳去除表明,过氧化物氧化剂的氧化效率顺序为 O/MnO > PMS/MnO > PDS/MnO > HO/MnO。在催化臭氧化中,不同 MnO 相的 SCP 降解速率常数顺序为 δ-MnO > α-MnO > γ-MnO> β-MnO。电子顺磁共振(EPR)表明,对于 SCP 的降解,羟基自由基(·OH)和单线态氧(O)可能比硫酸根(SO)和超氧自由基(·O)更为重要。自由基竞争实验表明,O 和·OH 分别对 SCP 的催化臭氧化贡献了 63.16%和 28.07%。还发现更多的氧空位、比表面积和 MnO 边缘的暴露可以促进 O 的活化,从而产生 O 和·OH,并促进 SCP 的降解。SCP 的降解途径主要可以遵循 S-C 或 S-N 键的断裂和脱氯,同时伴随着羟基化和氧化。