School of Computer Science, Guangdong University of Technology, Guangzhou, China.
School of Computer Science, Guangdong University of Technology, Guangzhou, China.
Genomics. 2020 Nov;112(6):4777-4787. doi: 10.1016/j.ygeno.2020.08.024. Epub 2020 Sep 7.
An increasing number of research shows that long non-coding RNA plays a key role in many important biological processes. However, the number of disease-related lncRNAs found by researchers remains relatively small, and experimental identification is time consuming and labor intensive. In this study, we propose a novel method, namely HAUBRW, to predict undiscovered lncRNA-disease associations. First, the hybrid algorithm, which combines the heat spread algorithm and the probability diffusion algorithm, redistributes the resources. Second, unbalanced bi-random walk, is used to infer undiscovered lncRNA disease associations. Seven advanced models, i.e. BRWLDA, DSCMF, RWRlncD, IDLDA, KATZ, Ping's, and Yang's were compared with our method, and simulation results show that the AUC of our method is more perfect than the other models. In addition, case studies have shown that HAUBRW can effectively predict candidate lncRNAs for breast, osteosarcoma and cervical cancer. Therefore, our approach may be a good choice in future biomedical research.
越来越多的研究表明,长非编码 RNA 在许多重要的生物过程中发挥着关键作用。然而,研究人员发现的与疾病相关的 lncRNA 数量仍然相对较少,实验鉴定既费时又费力。在这项研究中,我们提出了一种新的方法,即 HAUBRW,用于预测未发现的 lncRNA-疾病关联。首先,混合算法结合了热传播算法和概率扩散算法,重新分配资源。其次,使用不平衡双随机游走来推断未发现的 lncRNA 疾病关联。将七种先进的模型(即 BRWLDA、DSCMF、RWRlncD、IDLDA、KATZ、Ping's 和 Yang's)与我们的方法进行了比较,模拟结果表明,我们的方法的 AUC 比其他模型更加完善。此外,案例研究表明,HAUBRW 可以有效地预测乳腺癌、骨肉瘤和宫颈癌的候选 lncRNA。因此,我们的方法在未来的生物医学研究中可能是一个不错的选择。