Suppr超能文献

Acyl-CoA synthetase activity in Plasmodium knowlesi-infected erythrocytes displays peculiar substrate specificities.

作者信息

Beaumelle B D, Vial H J

机构信息

UA 530 CNRS, INSERM U.58, Montpellier, France.

出版信息

Biochim Biophys Acta. 1988 Jan 19;958(1):1-9. doi: 10.1016/0005-2760(88)90239-1.

Abstract

In its blood stages the malaria parasite, Plasmodium, displays very high lipid metabolism. We present evidence for an abundant long-chain acyl-CoA synthetase (EC 6.2.1.3) activity in Plasmodium knowlesi-infected simian erythrocytes. The activity was found to be 20-fold higher in the schizont-infected (the last parasite stage) than in control erythrocytes. The cosubstrate requirements of the enzyme were similar to those previously reported for acyl-CoA synthetases from other sources. Among the separated reaction products of oleyl-CoA synthetase, only PPi and oleyl-CoA were inhibitory, with Ki over 350 microM. The fatty acid specificity of the parasite acyl-CoA synthetase activity was fairly marked and depended on the unsaturation state of the substrate. The tested fatty acids displayed similar Vmax, whereas their Km ranged from 11 (palmitate) to 59 microM (arachidonate). Finally, experiments involving heat inactivation and separation on hydroxyapatite excluded the presence of a specific arachidonyl-CoA synthetase identical to those present in other cells. On the other hand, fatty acid competition experiments evidenced the existence of at least two distinct enzymatic sites for fatty acid activation in P. knowlesi-infected simian erythrocytes: one is specific for saturated fatty acids and the other for polyunsaturated species, whereas oleate could be activated at both sites.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验