Suppr超能文献

基于超分子肽纳米管在水中的高效人工光捕获系统。

Efficient Artificial Light-Harvesting System Based on Supramolecular Peptide Nanotubes in Water.

机构信息

Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.

Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom.

出版信息

J Am Chem Soc. 2021 Jan 13;143(1):382-389. doi: 10.1021/jacs.0c11060. Epub 2020 Dec 21.

Abstract

Artificial light-harvesting systems in aqueous media which mimic nature are of significant importance; however, they are often restrained by the solubility and the undesired aggregation-caused quenching effect of the hydrophobic chromophores. Here, we report a generalized strategy toward the construction of efficient artificial light-harvesting systems based on supramolecular peptide nanotubes in water. By molecularly aligning the hydrophobic chromophores along the nanotubes in a slipped manner, an artificial light-harvesting system with a two-step sequential Förster resonance energy transfer process is successfully fabricated, showing an energy transfer efficiency up to 95% and a remarkably high fluorescence quantum yield of 30%, along with high stability. Furthermore, the spectral emission could be continuously tuned from blue through green to orange, as well as outputted as a white light continuum with a fluorescence quantum yield of 29.9%. Our findings provide a versatile approach of designing efficient artificial light-harvesting systems and constructing highly emissive organic materials in aqueous media.

摘要

在水相介质中模拟自然的人工光捕获系统具有重要意义;然而,它们通常受到疏水性生色团的溶解度和不希望的聚集猝灭效应的限制。在这里,我们报告了一种基于超分子肽纳米管在水中构建高效人工光捕获系统的通用策略。通过分子方式将疏水性生色团沿纳米管以滑移方式排列,成功制备了具有两步顺序Förster 共振能量转移过程的人工光捕获系统,能量转移效率高达 95%,荧光量子产率高达 30%,同时具有高稳定性。此外,光谱发射可以从蓝色连续调谐到绿色再到橙色,并且可以输出荧光量子产率为 29.9%的白光连续体。我们的发现为设计高效人工光捕获系统和构建水相中的高发光有机材料提供了一种通用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/856b/8172009/e41903732325/ja0c11060_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验