Gorman Jeffrey, Hart Stephanie M, John Torsten, Castellanos Maria A, Harris Dvir, Parsons Molly F, Banal James L, Willard Adam P, Schlau-Cohen Gabriela S, Bathe Mark
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
These authors contributed equally.
Chem. 2024 May 9;10(5):1553-1575. doi: 10.1016/j.chempr.2024.03.007. Epub 2024 Apr 5.
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
天然光捕获系统以不同构型在空间上组织紧密堆积的染料,从而高效地传输激子或将其转化为电荷光产物。相比之下,诸如有机太阳能电池和发光二极管之类的人工光系统缺乏这种精细的结构控制,限制了它们的效率。因此,需要仿生多染料系统来以塑造最终光产物所需的亚纳米空间控制来组织染料。在这里,我们合成了11种不同的并入DNA折纸纳米结构的苝二酰亚胺(PDI)二聚体,并确定了对激子传输与电荷分离提供离散控制的二聚体结构。折纸独特的大结构空间和位点可调性提供了可控的PDI二聚体堆积,以形成对染料间构型敏感的独特激基复合物光产物。未来,该平台能够大规模编程组装模仿天然系统的染料,以塑造包括太阳能转换器和量子信息处理器在内的广泛光电器件所需的独特光物理产物。