Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, CA, 94143, USA.
Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California, San Francisco, CA, 94158, USA.
Commun Biol. 2020 Dec 21;3(1):747. doi: 10.1038/s42003-020-01402-5.
Approximately 10% of the world's population is at risk of schistosomiasis, a disease of poverty caused by the Schistosoma parasite. To facilitate drug discovery for this complex flatworm, we developed an automated high-content screen to quantify the multidimensional responses of Schistosoma mansoni post-infective larvae (somules) to chemical insult. We describe an integrated platform to process worms at scale, collect time-lapsed, bright-field images, segment highly variable and touching worms, and then store, visualize, and query dynamic phenotypes. To demonstrate the methodology, we treated somules with seven drugs that generated diverse responses and evaluated 45 static and kinetic response descriptors relative to concentration and time. For compound screening, we used the Mahalanobis distance to compare multidimensional phenotypic effects induced by 1323 approved drugs. Overall, we characterize both known anti-schistosomals and identify new bioactives. Apart from facilitating drug discovery, the multidimensional quantification provided by this platform will allow mapping of chemistry to phenotype.
约有 10%的世界人口面临血吸虫病的风险,这是一种由血吸虫寄生虫引起的贫困病。为了促进针对这种复杂扁形虫的药物发现,我们开发了一种自动化的高内涵筛选方法,以量化感染后曼氏血吸虫幼虫(somules)对化学刺激的多维反应。我们描述了一个集成平台,可以大规模处理蠕虫,收集延时、明场图像,分割高度变化和接触的蠕虫,然后存储、可视化和查询动态表型。为了演示该方法,我们用七种药物处理 somules,这些药物产生了不同的反应,并相对于浓度和时间评估了 45 个静态和动态反应描述符。对于化合物筛选,我们使用马氏距离来比较 1323 种已批准药物诱导的多维表型效应。总的来说,我们对已知的抗血吸虫药物进行了特征描述,并确定了新的生物活性物质。除了促进药物发现外,该平台提供的多维量化还将允许将化学物质映射到表型。