Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, New South Wales 2522, Australia.
Division of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
J Am Chem Soc. 2021 Jan 13;143(1):488-495. doi: 10.1021/jacs.0c12050. Epub 2020 Dec 22.
To meet various requirements for electron transfer (ET) at the substrate/electrolyte interface, mixed redox couples assigned to different functions have been applied. While in all studies the mixed redox species had different redox potentials, such redox systems inherently lose energy by ET between the species. We report interfacial ET kinetics employing mixed-ligand electrolytes based on Co complexes with mixtures of dimethyl- and dinonyl-substituted bipyridyl (bpy) ligands with the same redox potential. The ET rates of the mixed electrolytes decrease with the increasing ratio of the dinonyl-bpy ligand, with substrates adsorbed by molecules without alkyl chains due to a blocking effect. However, when the molecules on substrates have four alkyl chains, the ET rate between the molecules and the electrolytes with increasing ratio of the dinonyl-bpy ligand is enhanced. The substrate-dependent behavior is explained by selective intermolecular interactions. The results open design flexibility for mixed-redox electrolyte systems to control ET at multi-substrate interfaces and provide a novel means to tune ET rates simultaneously for various ET processes in a system without losing energy by the ET.
为满足底物/电解质界面处电子转移 (ET) 的各种要求,已应用分配了不同功能的混合氧化还原对。虽然在所有研究中,混合氧化还原物种都具有不同的氧化还原电位,但这种氧化还原体系会因物种之间的 ET 而固有地损失能量。我们报告了使用基于 Co 配合物的混合配体电解质的界面 ET 动力学,该配合物具有相同氧化还原电位的二甲基和二正丁基取代的联吡啶 (bpy) 配体的混合物。混合电解质的 ET 速率随二正丁基-bpy 配体比例的增加而降低,这是由于无烷基链的分子的吸附导致阻塞效应。然而,当底物上的分子具有四个烷基链时,随着二正丁基-bpy 配体比例的增加,分子与电解质之间的 ET 速率增强。这种底物依赖性行为可以通过选择性的分子间相互作用来解释。这些结果为混合氧化还原电解质系统的设计提供了灵活性,以控制多底物界面处的 ET,并提供了一种无需通过 ET 损失能量即可同时调节系统中各种 ET 过程 ET 速率的新方法。