Suppr超能文献

基于卷积神经网络的超声图像重建用于超快位移跟踪。

CNN-Based Ultrasound Image Reconstruction for Ultrafast Displacement Tracking.

出版信息

IEEE Trans Med Imaging. 2021 Mar;40(3):1078-1089. doi: 10.1109/TMI.2020.3046700. Epub 2021 Mar 2.

Abstract

Thanks to its capability of acquiring full-view frames at multiple kilohertz, ultrafast ultrasound imaging unlocked the analysis of rapidly changing physical phenomena in the human body, with pioneering applications such as ultrasensitive flow imaging in the cardiovascular system or shear-wave elastography. The accuracy achievable with these motion estimation techniques is strongly contingent upon two contradictory requirements: a high quality of consecutive frames and a high frame rate. Indeed, the image quality can usually be improved by increasing the number of steered ultrafast acquisitions, but at the expense of a reduced frame rate and possible motion artifacts. To achieve accurate motion estimation at uncompromised frame rates and immune to motion artifacts, the proposed approach relies on single ultrafast acquisitions to reconstruct high-quality frames and on only two consecutive frames to obtain 2-D displacement estimates. To this end, we deployed a convolutional neural network-based image reconstruction method combined with a speckle tracking algorithm based on cross-correlation. Numerical and in vivo experiments, conducted in the context of plane-wave imaging, demonstrate that the proposed approach is capable of estimating displacements in regions where the presence of side lobe and grating lobe artifacts prevents any displacement estimation with a state-of-the-art technique that relies on conventional delay-and-sum beamforming. The proposed approach may therefore unlock the full potential of ultrafast ultrasound, in applications such as ultrasensitive cardiovascular motion and flow analysis or shear-wave elastography.

摘要

由于能够以每秒数千赫兹的速度获取全景帧,超快速超声成像技术实现了对人体中快速变化的物理现象的分析,其开创性的应用包括心血管系统中超灵敏的血流成像或剪切波弹性成像。这些运动估计技术的准确性强烈依赖于两个相互矛盾的要求:高质量的连续帧和高帧率。事实上,通过增加引导超快速采集的数量通常可以提高图像质量,但代价是帧率降低和可能出现运动伪影。为了在不降低帧率和不受运动伪影影响的情况下实现准确的运动估计,所提出的方法依赖于单次超快速采集来重建高质量的帧,并仅使用两个连续的帧来获得 2-D 位移估计。为此,我们部署了一种基于卷积神经网络的图像重建方法,结合了基于互相关的斑点跟踪算法。在平面波成像的背景下进行的数值和体内实验表明,所提出的方法能够在存在旁瓣和栅瓣伪影的区域估计位移,而这些区域无法使用依赖传统延迟和求和波束形成的最先进技术进行任何位移估计。因此,该方法可能会挖掘超快速超声的全部潜力,例如在超灵敏的心血管运动和血流分析或剪切波弹性成像等应用中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验