Suppr超能文献

炔烃光羧化反应中钴催化剂的关键电子传递效应:DFT 计算。

Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation.

机构信息

Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China.

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

出版信息

J Org Chem. 2021 Jan 15;86(2):1540-1548. doi: 10.1021/acs.joc.0c02393. Epub 2020 Dec 22.

Abstract

Photocarboxylation of alkyne with carbon dioxide represents a highly attractive strategy to prepare functionalized alkenes with high efficiency and atomic economy. However, the reaction mechanism, especially the sequence of elementary steps (leading to different reaction pathways), reaction modes of the H-transfer step and carboxylation step, spin and charge states of the cobalt catalyst, etc., is still an open question. Herein, density functional theory calculations are carried out to probe the mechanism of the Ir/Co-catalyzed photocarboxylation of alkynes. The overall catalytic cycle mainly consists of four steps: reductive-quenching of the Ir catalyst, hydrogen transfer (rate-determining step), outer sphere carboxylation, and the final catalyst regeneration step. Importantly, the cobalt catalyst can facilitate the H-transfer by an uncommon hydride coupled electron transfer (HCET) process. The pivotal electron delivery effect of the Co center enables a facile H-transfer to the α-C(alkyne) of the aryl group, resulting in the high regioselectivity for β-carboxylation.

摘要

炔烃与二氧化碳的光羧化反应是一种高效、原子经济性地制备功能化烯烃的极具吸引力的策略。然而,反应机理,特别是基本步骤的顺序(导致不同的反应途径)、H 转移步骤和羧化步骤的反应模式、钴催化剂的自旋和电荷状态等,仍然是一个悬而未决的问题。在此,通过密度泛函理论计算研究了 Ir/Co 催化的炔烃光羧化反应的机理。整个催化循环主要包括四个步骤:Ir 催化剂的还原猝灭、氢转移(决速步骤)、外球羧化和最终的催化剂再生步骤。重要的是,钴催化剂可以通过不常见的氢化物耦合电子转移(HCET)过程促进 H 转移。Co 中心的关键电子传递效应使得易于将 H 转移到芳基的α-C(炔烃)上,从而导致β-羧化的高区域选择性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验