Suppr超能文献

镍铱催化剂在水溶液中对 H 和 CO 的选择性氧化:DFT 机理研究。

Selective Oxidation of H and CO by NiIr Catalyst in Aqueous Solution: A DFT Mechanistic Study.

机构信息

International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan.

出版信息

Inorg Chem. 2020 Jan 21;59(2):1014-1028. doi: 10.1021/acs.inorgchem.9b02400. Epub 2020 Jan 3.

Abstract

One of the challenges in utilizing hydrogen gas (H) as a sustainable fossil fuel alternative is the inhibition of H oxidation by carbon monoxide (CO), which is involved in the industrial production of H sources. To solve this problem, a catalyst that selectively oxidizes either CO or H or one that co-oxidizes H and CO is needed. Recently, a NiIr catalyst [NiCl(X)IrCl(η-CMe)], (X = dimethyl-3,7-diazanonane-1,9-dithiolate), which efficiently and selectively oxidizes either H or CO depending on the pH, has been developed ( , 56, 9723-9726). In the present work, density functional theory (DFT) calculations are employed to elucidate the pH-dependent reaction mechanisms of H and CO oxidation catalyzed by this NiIr catalyst. During H oxidation, our calculations suggest that dihydrogen binds to the Ir center and generates an Ir(III)-dihydrogen complex, followed by subsequent isomerization to an Ir(V)-dihydride species. Then, a proton is abstracted by a buffer base, CHCOO, resulting in the formation of a hydride complex. The catalytic cycle completes with electron transfer from the hydride complex to a protonated 2,6-dichlorobenzeneindophenol (DCIP) and a proton transfer from the oxidized hydride complex to a buffer base. The CO oxidation mechanism involves three distinct steps, i.e., (1) formation of a metal carbonyl complex, (2) formation of a metallocarboxylic acid, and (3) conversion of the metallocarboxylic acid to a hydride complex. The formation of the metallocarboxylic acid involves nucleophilic attack of OH to the carbonyl-C followed by a large structural change with concomitant cleavage of the Ir-S bond and rotation of the COOH group along the NiIr axis. During the conversion of the metallocarboxylic acid to the hydride complex, intramolecular proton transfer followed by removal of CO leads to the formation of the hydride complexes. In addition, the barrier heights for the binding of small molecules (H, OH, HO, and CO) to Ir were calculated, and the results indicated that dissociation from Ir is a faster process than the binding of HO and H. These calculations indicate that H oxidation is inhibited by CO and OH and thus prefers acidic conditions. In contrast, the CO oxidation reactions occur more favorably under basic conditions, as the formation of the metallocarboxylic acid involves OH attack to a carbonyl-C and the binding of OH to Ni largely stabilizes the triplet spin state of the complex. Taken together, these calculations provide a rationale for the experimentally observed pH-dependent, selective oxidations of H and CO.

摘要

利用氢气(H)作为一种可持续的替代化石燃料,存在一个挑战,即一氧化碳(CO)抑制了 H 的氧化,而 CO 参与了 H 源的工业生产。为了解决这个问题,需要一种能够选择性氧化 CO 或 H 的催化剂,或者一种能够同时氧化 H 和 CO 的催化剂。最近,开发了一种 NiIr 催化剂[NiCl(X)IrCl(η-CMe)],(X = 二甲基-3,7-二氮杂壬烷-1,9-二硫醇ate),它可以根据 pH 值高效且选择性地氧化 H 或 CO(, 56, 9723-9726)。在本工作中,采用密度泛函理论(DFT)计算阐明了这种 NiIr 催化剂催化 H 和 CO 氧化的 pH 依赖性反应机理。在 H 氧化过程中,我们的计算表明氢气与 Ir 中心结合并生成 Ir(III)-二氢配合物,随后发生异构化生成 Ir(V)-二氢化物物种。然后,缓冲碱基 CHCOO 夺取一个质子,生成氢化物配合物。催化循环通过从氢化物配合物向质子化 2,6-二氯苯并吲哚酚(DCIP)转移电子和从氧化氢化物配合物向缓冲碱基转移质子完成。CO 氧化机制涉及三个不同的步骤,即(1)形成金属羰基配合物,(2)形成金属羧酸,以及(3)将金属羧酸转化为氢化物配合物。金属羧酸的形成涉及 OH 的亲核进攻羰基-C,随后发生大的结构变化,同时 Ir-S 键断裂,COOH 基团沿 NiIr 轴旋转。在金属羧酸转化为氢化物配合物的过程中,分子内质子转移,随后 CO 消除,生成氢化物配合物。此外,还计算了小分子(H、OH、HO 和 CO)与 Ir 结合的势垒高度,结果表明 Ir 的解离过程快于 HO 和 H 的结合过程。这些计算表明 H 的氧化受到 CO 和 OH 的抑制,因此更倾向于酸性条件。相反,CO 氧化反应在碱性条件下更有利,因为金属羧酸的形成涉及 OH 对羰基-C 的进攻,而 OH 与 Ni 的结合极大地稳定了配合物的三重态自旋态。综上所述,这些计算为实验观察到的 H 和 CO 的 pH 依赖性选择性氧化提供了理论依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验