Suppr超能文献

具有随机重置的空间相关扩散:首达时间研究。

Space-dependent diffusion with stochastic resetting: A first-passage study.

作者信息

Ray Somrita

机构信息

School of Chemistry, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, The Center for Physics and Chemistry of Living Systems, and The Ratner Center for Single Molecule Science, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

J Chem Phys. 2020 Dec 21;153(23):234904. doi: 10.1063/5.0034432.

Abstract

We explore the effect of stochastic resetting on the first-passage properties of space-dependent diffusion in the presence of a constant bias. In our analytically tractable model system, a particle diffusing in a linear potential U(x) ∝ μ|x| with a spatially varying diffusion coefficient D(x) = D|x| undergoes stochastic resetting, i.e., returns to its initial position x at random intervals of time, with a constant rate r. Considering an absorbing boundary placed at x < x, we first derive an exact expression of the survival probability of the diffusing particle in the Laplace space and then explore its first-passage to the origin as a limiting case of that general result. In the limit x → 0, we derive an exact analytic expression for the first-passage time distribution of the underlying process. Once resetting is introduced, the system is observed to exhibit a series of dynamical transitions in terms of a sole parameter, ν≔(1+μD ), that captures the interplay of the drift and the diffusion. Constructing a full phase diagram in terms of ν, we show that for ν < 0, i.e., when the potential is strongly repulsive, the particle can never reach the origin. In contrast, for weakly repulsive or attractive potential (ν > 0), it eventually reaches the origin. Resetting accelerates such first-passage when ν < 3 but hinders its completion for ν > 3. A resetting transition is therefore observed at ν = 3, and we provide a comprehensive analysis of the same. The present study paves the way for an array of theoretical and experimental works that combine stochastic resetting with inhomogeneous diffusion in a conservative force field.

摘要

我们探讨了在存在恒定偏置的情况下,随机重置对空间依赖扩散的首次通过特性的影响。在我们易于进行解析分析的模型系统中,一个在具有空间变化扩散系数(D(x)=D|x|)的线性势(U(x)∝μ|x|)中扩散的粒子经历随机重置,即每隔一段时间以恒定速率(r)随机回到其初始位置(x)。考虑在(x < x)处设置一个吸收边界,我们首先推导出扩散粒子在拉普拉斯空间中的生存概率的精确表达式,然后将其首次通过原点作为该一般结果的极限情况进行探讨。在(x→0)的极限情况下,我们推导出了基础过程的首次通过时间分布的精确解析表达式。一旦引入重置,观察到系统会根据一个单独的参数(ν≔(1 + μD))表现出一系列动态转变,该参数捕捉了漂移和扩散的相互作用。通过构建关于(ν)的完整相图,我们表明对于(ν < 0),即当势很强排斥时,粒子永远无法到达原点。相反,对于弱排斥或吸引势((ν > 0)),它最终会到达原点。当(ν < 3)时,重置会加速这种首次通过,但当(ν > 3)时会阻碍其完成。因此,在(ν = 3)处观察到一个重置转变,我们对其进行了全面分析。本研究为一系列将随机重置与保守力场中的非均匀扩散相结合的理论和实验工作铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验