Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Phys Med. 2021 Jan;81:273-284. doi: 10.1016/j.ejmp.2020.11.028. Epub 2021 Jan 19.
To develop and verify effective dose (D) calculation in He ion beam therapy based on the modified microdosimetric kinetic model (mMKM) and evaluate the bio-sensitivity of mMKM-based plans to clinical parameters using a fast analytical dose engine.
Mixed radiation field particle spectra (MRFS) databases have been generated with Monte-Carlo (MC) simulations for He-ion beams. Relative biological effectiveness (RBE) and D calculation using MRFS were established within a fast analytical engine. Spread-out Bragg-Peaks (SOBPs) in water were optimized for two dose levels and two tissue types with photon linear-quadratic model parameters α, β, and (α/β) to verify MRFS-derived database implementation against computations with MC-generated mixed-field α and β databases. Bio-sensitivity of the SOBPs was investigated by varying absolute values of β, while keeping (α/β) constant. Additionally, dose, dose-averaged linear energy transfer, and bio-sensitivity were investigated for two patient cases.
Using MRFS-derived databases, dose differences ≲2% in the plateau and SOBP are observed compared to computations with MC-generated databases. Bio-sensitivity studies show larger deviations when altering the absolute β value, with maximum D changes of ~5%, with similar results for patient cases. Bio-sensitivity analysis indicates a greater impact on D varying (α/β) than β in mMKM.
The MRSF approach yielded negligible differences in the target and small differences in the plateau compared to MC-generated databases. The presented analyses provide guidance for proper implementation of RBE-weighted He ion dose prescription and planning with mMKM. The MRFS-D calculation approach using mMKM will be implemented in a clinical treatment planning system.
基于改良微剂量动力学模型(mMKM)开发并验证 He 离子束治疗中的有效剂量(D)计算方法,并使用快速分析剂量引擎评估基于 mMKM 的计划对临床参数的生物敏感性。
使用蒙特卡罗(MC)模拟生成了用于 He 离子束的混合辐射场粒子谱(MRFS)数据库。在快速分析引擎中建立了使用 MRFS 的相对生物效应(RBE)和 D 计算。使用光子线性能量传递线性二次模型参数 α、β 和(α/β)优化水的扩展布拉格峰(SOBP),以验证基于 MRFS 的数据库实现与使用 MC 生成的混合场α和β数据库计算的一致性。通过改变β的绝对值,同时保持(α/β)不变,研究 SOBP 的生物敏感性。此外,还研究了两个患者病例的剂量、剂量平均线性能量传递和生物敏感性。
与使用 MC 生成的数据库相比,使用 MRFS 衍生数据库计算得到的平台和 SOBP 剂量差异≲2%。生物敏感性研究表明,当改变绝对β值时,会产生更大的偏差,最大 D 变化约为 5%,患者病例的结果相似。生物敏感性分析表明,在 mMKM 中,与β相比,(α/β)的变化对 D 的影响更大。
MRSF 方法与 MC 生成的数据库相比,在靶区产生的差异可忽略不计,在平台区产生的差异较小。所提出的分析为使用 mMKM 进行 RBE 加权 He 离子剂量处方和计划提供了指导。将使用 mMKM 的 MRFS-D 计算方法实现在临床治疗计划系统中。