Ye Xinglong, Yan Fengkai, Schäfer Lukas, Wang Di, Geßwein Holger, Wang Wu, Chellali Mohammed Reda, Stephenson Leigh T, Skokov Konstantin, Gutfleisch Oliver, Raabe Dierk, Hahn Horst, Gault Baptiste, Kruk Robert
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH (MPIE), 40237, Düsseldorf, Germany.
Adv Mater. 2021 Feb;33(5):e2006853. doi: 10.1002/adma.202006853. Epub 2020 Dec 23.
Pinning-type magnets with high coercivity at high temperatures are at the core of thriving clean-energy technologies. Among these, Sm Co -based magnets are excellent candidates owing to their high-temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20-30% of the theoretical limits. Here, the roles of the grain-interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto-structural characterization and atomic-scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization-switching paradigm of pinning-type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits.
具有高温高矫顽力的钉扎型磁体是蓬勃发展的清洁能源技术的核心。其中,钐钴基磁体因其高温稳定性而成为优秀的候选材料。然而,尽管人们为优化晶粒内微观结构付出了巨大努力,但目前矫顽力仅达到理论极限的20% - 30%。在此,一种新兴的磁电方法解开了晶粒内部纳米结构和晶界在控制矫顽力方面的作用。通过仅施加约1 V的电压进行氢充/放电,矫顽力以约1.3 T的前所未有的值进行可逆调节。原位磁结构表征和氢原子的原子尺度追踪表明,氢原子在晶界处的偏析而非晶体结构的变化主导了矫顽力的可逆和显著变化。氢降低了局部磁晶各向异性,并促进了从晶界开始的磁化反转。这项研究为通过用氢原子设计晶界来实现永磁体中的巨磁电效应开辟了一条道路。此外,它揭示了在钉扎型磁体的传统磁化切换范式中晶界迄今被忽视的关键作用,这表明对克服矫顽力极限的工程策略需进行重新审视。