Bryson M F, Drake H L
Department of Biology, University of Mississippi, University 38677.
J Bacteriol. 1988 Jan;170(1):234-8. doi: 10.1128/jb.170.1.234-238.1988.
The mechanism of nickel transport by Clostridium pasteurianum was investigated by using 63NiCl2 and a microfiltration transport assay. Nickel transport was energy dependent, requiring either glucose or sucrose; xylose and o-methyl glucose did not support growth, butyrogenesis, or transport. Transport was optimum at pH 7 and 37 degrees C, and early-stationary-phase cells had the highest propensity for nickel transport. The apparent Km and Vmax for nickel transport approximated 85 microM Ni and 1,400 pmol of Ni transported per min per mg (dry weight) of cells, respectively. On the basis of metal specificity, nickel appears to be transported primarily by a magnesium transporter, although an alternative nickel transporter may also be involved. ATPase inhibitors (N,N'-dicyclohexylcarbodiimide, tributyltin chloride, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, and quercetin), protonophores (carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and gramicidin D), metal ionophores (valinomycin, monensin, and nigericin), benzyl viologen, carbon monoxide, and oxygen inhibited nickel transport. Nickel transport was coupled indirectly to butyrogenesis and was dependent on the energy state of the cell.
利用63NiCl2和微滤转运试验研究了巴氏梭菌转运镍的机制。镍的转运依赖能量,需要葡萄糖或蔗糖;木糖和邻甲基葡萄糖不能支持生长、产丁酸或转运。转运在pH 7和37℃时最佳,处于生长早期稳定期的细胞对镍转运的倾向最高。镍转运的表观Km和Vmax分别约为85μM镍和每分钟每毫克(干重)细胞转运1400皮摩尔镍。基于金属特异性,镍似乎主要由镁转运体转运,尽管可能也涉及另一种镍转运体。ATP酶抑制剂(N,N'-二环己基碳二亚胺、三丁基氯化锡、7-氯-4-硝基苯并-2-恶唑-1,3-二氮杂环戊二烯和槲皮素)、质子载体(羰基氰化物间氯苯腙、2,4-二硝基苯酚和短杆菌肽D)、金属离子载体(缬氨霉素、莫能菌素和尼日利亚菌素)、苄基紫精、一氧化碳和氧气抑制镍转运。镍转运与产丁酸间接偶联,并依赖于细胞的能量状态。