Suppr超能文献

测序深度和文库制备对“三样本”方案中 RNA-Seq 数据毒理学解释的影响。

Impact of Sequencing Depth and Library Preparation on Toxicological Interpretation of RNA-Seq Data in a "Three-Sample" Scenario.

机构信息

Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States.

出版信息

Chem Res Toxicol. 2021 Feb 15;34(2):529-540. doi: 10.1021/acs.chemrestox.0c00368. Epub 2020 Dec 23.

Abstract

While RNA-sequencing (RNA-seq) has emerged as a standard approach in toxicogenomics, its full potential in gaining underlying toxicological mechanisms is still not clear when only three biological replicates are used. This "three-sample" study design is common in toxicological research, particularly in animal studies during preclinical drug development. Sequencing depth (the total number of reads in an experiment) and library preparation are critical to the resolution and integrity of RNA-seq data and biological interpretation. We used aflatoxin b1 (AFB1), a model toxicant, to investigate the effect of sequencing depth and library preparation in RNA-seq on toxicological interpretation in the "three-sample" scenario. We also compared different gene profiling platforms (RNA-seq, TempO-seq, microarray, and qPCR) using identical liver samples. Well-established mechanisms of AFB1 toxicity served as ground truth for our comparative analyses. We found that a minimum of 20 million reads was sufficient to elicit key toxicity functions and pathways underlying AFB1-induced liver toxicity using three replicates and that identification of differentially expressed genes was positively associated with sequencing depth to a certain extent. Further, our results showed that RNA-seq revealed toxicological insights from pathway enrichment with overall higher statistical power and overlap ratio, compared with TempO-seq and microarray. Moreover, library preparation using the same methods was important to reproducing the toxicological interpretation.

摘要

虽然 RNA 测序 (RNA-seq) 已成为毒理学基因组学的标准方法,但当仅使用三个生物学重复时,其在获得潜在毒理学机制方面的全部潜力尚不清楚。这种“三样本”研究设计在毒理学研究中很常见,特别是在临床前药物开发期间的动物研究中。测序深度(实验中读取的总数)和文库制备对 RNA-seq 数据的分辨率和完整性以及生物学解释至关重要。我们使用黄曲霉毒素 B1 (AFB1),一种模型毒物,研究了在“三样本”情况下,测序深度和文库制备对 RNA-seq 毒理学解释的影响。我们还使用相同的肝样本来比较不同的基因分析平台(RNA-seq、TempO-seq、微阵列和 qPCR)。黄曲霉毒素 B1 毒性的既定机制是我们比较分析的基准。我们发现,使用三个重复,至少需要 2000 万条读数才能引发 AFB1 诱导的肝毒性的关键毒性功能和途径,并且差异表达基因的鉴定在一定程度上与测序深度呈正相关。此外,我们的结果表明,与 TempO-seq 和微阵列相比,RNA-seq 从通路富集中揭示了毒理学见解,具有更高的统计能力和重叠率。此外,使用相同方法进行文库制备对于复制毒理学解释很重要。

相似文献

1
Impact of Sequencing Depth and Library Preparation on Toxicological Interpretation of RNA-Seq Data in a "Three-Sample" Scenario.
Chem Res Toxicol. 2021 Feb 15;34(2):529-540. doi: 10.1021/acs.chemrestox.0c00368. Epub 2020 Dec 23.
2
RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.
PLoS One. 2013 Apr 22;8(4):e61768. doi: 10.1371/journal.pone.0061768. Print 2013.
3
Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens.
BMC Bioinformatics. 2011 Oct 18;12 Suppl 10(Suppl 10):S5. doi: 10.1186/1471-2105-12-S10-S5.
6
RNA-seq Sample Preparation Kits Strongly Affect Transcriptome Profiles of a Gas-Fermenting Bacterium.
Microbiol Spectr. 2022 Aug 31;10(4):e0230322. doi: 10.1128/spectrum.02303-22. Epub 2022 Jul 27.
8
Single-cell sequencing reveals novel mechanisms of Aflatoxin B1-induced hepatotoxicity in S phase-arrested L02 cells.
Cell Biol Toxicol. 2020 Dec;36(6):603-608. doi: 10.1007/s10565-020-09547-z. Epub 2020 Jul 1.
9
TIRE-seq simplifies transcriptomics via integrated RNA capture and library preparation.
Sci Rep. 2025 May 2;15(1):15385. doi: 10.1038/s41598-025-98282-8.

本文引用的文献

1
R-ODAF: Omics data analysis framework for regulatory application.
Regul Toxicol Pharmacol. 2022 Jun;131:105143. doi: 10.1016/j.yrtph.2022.105143. Epub 2022 Mar 3.
2
Towards the development of an omics data analysis framework.
Regul Toxicol Pharmacol. 2020 Apr;112:104621. doi: 10.1016/j.yrtph.2020.104621. Epub 2020 Feb 19.
3
Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins.
Front Microbiol. 2019 Oct 10;10:2347. doi: 10.3389/fmicb.2019.02347. eCollection 2019.
4
Systematic evaluation of RNA-Seq preparation protocol performance.
BMC Genomics. 2019 Jul 11;20(1):571. doi: 10.1186/s12864-019-5953-1.
6
Toxicogenomics: A 2020 Vision.
Trends Pharmacol Sci. 2019 Feb;40(2):92-103. doi: 10.1016/j.tips.2018.12.001. Epub 2018 Dec 26.
7
Empirical assessment of the impact of sample number and read depth on RNA-Seq analysis workflow performance.
BMC Bioinformatics. 2018 Nov 14;19(1):423. doi: 10.1186/s12859-018-2445-2.
8
A Comparison of the TempO-Seq S1500+ Platform to RNA-Seq and Microarray Using Rat Liver Mode of Action Samples.
Front Genet. 2018 Oct 30;9:485. doi: 10.3389/fgene.2018.00485. eCollection 2018.
9
RnaSeqSampleSize: real data based sample size estimation for RNA sequencing.
BMC Bioinformatics. 2018 May 30;19(1):191. doi: 10.1186/s12859-018-2191-5.
10
Aflatoxin B1 and M1: Biological Properties and Their Involvement in Cancer Development.
Toxins (Basel). 2018 May 24;10(6):214. doi: 10.3390/toxins10060214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验