Ghimire Nirmal J, Dally Rebecca L, Poudel L, Jones D C, Michel D, Magar N Thapa, Bleuel M, McGuire Michael A, Jiang J S, Mitchell J F, Lynn Jeffrey W, Mazin I I
Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, USA.
Quantum Science and Engineering Center, George Mason University, Fairfax, VA 22030, USA.
Sci Adv. 2020 Dec 18;6(51). doi: 10.1126/sciadv.abe2680. Print 2020 Dec.
Identification, understanding, and manipulation of novel magnetic textures are essential for the discovery of new quantum materials for future spin-based electronic devices. In particular, materials that manifest a large response to external stimuli such as a magnetic field are subject to intense investigation. Here, we study the kagome-net magnet YMnSn by magnetometry, transport, and neutron diffraction measurements combined with first-principles calculations. We identify a number of nontrivial magnetic phases, explain their microscopic nature, and demonstrate that one of them hosts a large topological Hall effect (THE). We propose a previously unidentified fluctuation-driven mechanism, which leads to the THE at elevated temperatures. This interesting physics comes from parametrically frustrated interplanar exchange interactions that trigger strong magnetic fluctuations. Our results pave a path to chiral spin textures, promising for novel spintronics.
识别、理解和操控新型磁织构对于发现用于未来自旋基电子器件的新型量子材料至关重要。特别是,那些对诸如磁场等外部刺激表现出强烈响应的材料受到了深入研究。在此,我们通过磁力测量、输运测量和中子衍射测量,并结合第一性原理计算,对三角晶格磁体YMnSn进行了研究。我们识别出了一些非平凡磁相,解释了它们的微观本质,并证明其中一个磁相具有大的拓扑霍尔效应(THE)。我们提出了一种此前未被识别的涨落驱动机制,该机制在高温下导致了拓扑霍尔效应。这种有趣的物理现象源于参数性受挫的面间交换相互作用,这种相互作用引发了强烈的磁涨落。我们的结果为手性自旋织构铺平了道路,有望用于新型自旋电子学。