Roychowdhury Subhajit, Samanta Kartik, Singh Sukriti, Schnelle Walter, Zhang Yang, Noky Jonathan, Vergniory Maia G, Shekhar Chandra, Felser Claudia
Department of Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany.
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2401970121. doi: 10.1073/pnas.2401970121. Epub 2024 Jul 15.
In topological magnetic materials, the topology of the electronic wave function is strongly coupled to the structure of the magnetic order. In general, ferromagnetic Weyl semimetals generate a strong anomalous Hall conductivity (AHC) due to a large Berry curvature that scales with their magnetization. In contrast, a comparatively small AHC is observed in noncollinear antiferromagnets. We investigated HoAgGe, an antiferromagnetic (AFM) Kagome spin-ice compound, which crystallizes in a hexagonal ZrNiAl-type structure in which Ho atoms are arranged in a distorted Kagome lattice, forming an intermetallic Kagome spin-ice state in the -plane. It exhibits a large topological Hall resistivity of ~1.6 µΩ-cm at 2.0 K in a field of ~3 T owing to the noncoplanar structure. Interestingly, a total AHC of 2,800 Ω cm is observed at ~45 K, i.e., 4 , which is quite unusual and goes beyond the normal expectation considering HoAgGe as an AFM Kagome spin-ice compound with a of ~11 K. We demonstrate further that the AHC below results from the nonvanishing Berry curvature generated by the formation of Weyl points under the influence of the external magnetic field, while the skew scattering led by Kagome spins dominates above the . These results offer a unique opportunity to study frustration in AFM Kagome lattice compounds.
在拓扑磁性材料中,电子波函数的拓扑结构与磁序结构紧密耦合。一般来说,铁磁外尔半金属由于与磁化强度相关的大贝里曲率而产生很强的反常霍尔电导率(AHC)。相比之下,在非共线反铁磁体中观察到的AHC相对较小。我们研究了HoAgGe,一种反铁磁(AFM) Kagome自旋冰化合物,它以六方ZrNiAl型结构结晶,其中Ho原子排列在扭曲的Kagome晶格中,在xy平面形成金属间Kagome自旋冰态。由于其非共面结构,在2.0 K和3 T的磁场中,它表现出约1.6 μΩ·cm的大拓扑霍尔电阻率。有趣的是,在45 K时观察到总AHC为2800 Ω·cm²,即4e²/h,这相当不寻常,并且超出了将HoAgGe视为具有~11 K居里温度的AFM Kagome自旋冰化合物的正常预期。我们进一步证明,低于居里温度时的AHC是由外部磁场影响下形成外尔点产生的非零贝里曲率引起的,而在居里温度以上,由Kagome自旋导致的斜散射起主导作用。这些结果为研究AFM Kagome晶格化合物中的阻挫提供了独特的机会。