Department of Chemistry, University of California, Berkeley, California 94720, USA.
Phys Chem Chem Phys. 2021 Jan 21;23(2):928-943. doi: 10.1039/d0cp05852a.
Energy decomposition analysis (EDA) based on absolutely localized molecular orbitals (ALMOs) decomposes the interaction energy between molecules into physically interpretable components like geometry distortion, frozen interactions, polarization, and charge transfer (CT, also sometimes called charge delocalization) interactions. In this work, a numerically exact scheme to decompose the CT interaction energy into pairwise additive terms is introduced for the ALMO-EDA using density functional theory. Unlike perturbative pairwise charge-decomposition analysis, the new approach does not break down for strongly interacting systems, or show significant exchange-correlation functional dependence in the decomposed energy components. Both the energy lowering and the charge flow associated with CT can be decomposed. Complementary occupied-virtual orbital pairs (COVPs) that capture the dominant donor and acceptor CT orbitals are obtained for the new decomposition. It is applied to systems with different types of interactions including DNA base-pairs, borane-ammonia adducts, and transition metal hexacarbonyls. While consistent with most existing understanding of the nature of CT in these systems, the results also reveal some new insights into the origin of trends in donor-acceptor interactions.
基于完全局域分子轨道(ALMO)的能量分解分析(EDA)将分子间的相互作用能分解为具有物理可解释性的分量,如几何变形、冻结相互作用、极化和电荷转移(CT,也有时称为电荷离域)相互作用。在这项工作中,针对基于密度泛函理论的 ALMO-EDA,引入了一种数值精确的方法,将 CT 相互作用能分解为可加的对分项。与微扰的对分电荷分解分析不同,新方法不会在强相互作用系统中失效,也不会在分解的能量分量中表现出显著的交换相关泛函依赖性。与 CT 相关的能量降低和电荷流动都可以被分解。对于新的分解,获得了捕捉主要供体和受体 CT 轨道的互补占据-空轨道对(COVP)。该方法应用于具有不同相互作用类型的体系,包括 DNA 碱基对、硼烷-氨加合物和过渡金属六羰基化合物。尽管与这些体系中 CT 性质的大多数现有理解一致,但结果还揭示了一些关于供体-受体相互作用趋势起源的新见解。