Suppr超能文献

绝热图景下的能量分解分析。

Energy decomposition analysis in an adiabatic picture.

作者信息

Mao Yuezhi, Horn Paul R, Head-Gordon Martin

机构信息

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA.

出版信息

Phys Chem Chem Phys. 2017 Feb 22;19(8):5944-5958. doi: 10.1039/c6cp08039a.

Abstract

Energy decomposition analysis (EDA) of electronic structure calculations has facilitated quantitative understanding of diverse intermolecular interactions. Nevertheless, such analyses are usually performed at a single geometry and thus decompose a "single-point" interaction energy. As a result, the influence of the physically meaningful EDA components on the molecular structure and other properties are not directly obtained. To address this gap, the absolutely localized molecular orbital (ALMO)-EDA is reformulated in an adiabatic picture, where the frozen, polarization, and charge transfer energy contributions are defined as energy differences between the stationary points on different potential energy surfaces (PESs), which are accessed by geometry optimizations at the frozen, polarized and fully relaxed levels of density functional theory (DFT). Other molecular properties such as vibrational frequencies can thus be obtained at the stationary points on each PES. We apply the adiabatic ALMO-EDA to different configurations of the water dimer, the water-Cl and water-Mg/Ca complexes, metallocenes (Fe, Ni, Cu, Zn), and the ammonia-borane complex. This method appears to be very useful for unraveling how physical effects such as polarization and charge transfer modulate changes in molecular properties induced by intermolecular interactions. As an example of the insight obtained, we find that a linear hydrogen bond geometry for the water dimer is preferred even without the presence of polarization and charge transfer, while the red shift in the OH stretch frequency is primarily a charge transfer effect; by contrast, a near-linear geometry for the water-chloride hydrogen bond is achieved only when charge transfer is allowed.

摘要

电子结构计算中的能量分解分析(EDA)有助于对各种分子间相互作用进行定量理解。然而,此类分析通常在单一几何构型下进行,因此分解的是“单点”相互作用能。结果,无法直接获得具有物理意义的EDA组分对分子结构和其他性质的影响。为弥补这一差距,绝对定域分子轨道(ALMO)-EDA在绝热图景中被重新表述,其中冻结能、极化能和电荷转移能贡献被定义为不同势能面(PES)上驻点之间的能量差,这些驻点可通过在密度泛函理论(DFT)的冻结、极化和完全弛豫水平下进行几何优化来获取。因此,其他分子性质,如振动频率,可在每个PES的驻点处获得。我们将绝热ALMO-EDA应用于水二聚体、水-Cl和水-Mg/Ca络合物、金属茂(Fe、Ni、Cu、Zn)以及氨硼烷络合物的不同构型。该方法对于揭示诸如极化和电荷转移等物理效应如何调节分子间相互作用引起的分子性质变化似乎非常有用。作为所获见解的一个例子,我们发现即使不存在极化和电荷转移,水二聚体的线性氢键几何构型也是优选的,而OH伸缩频率的红移主要是电荷转移效应;相比之下,只有当允许电荷转移时,水-氯化物氢键才能形成近线性几何构型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验