Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
Heat and Fluid Engineering Group, Department of Mechanical Engineering, Nagaoka University of Technology, 940-2188 Nagaoka, Japan.
Langmuir. 2021 Jan 12;37(1):132-138. doi: 10.1021/acs.langmuir.0c02608. Epub 2020 Dec 27.
Tuning the rheological properties of surfactant solutions by charge screening is a convenient formulation tool in cosmetic, household, oil recovery, drag-reduction, and thickening applications. Surfactants self-assemble in water, and upon charge screening and core shielding, they grow into long wormlike micelles (WLMs). These are valuable model systems for soft matter physics, and the most explored formulation is hexadecyl-trimethylammonium bromide (CTAB) and sodium salicylate (NaSal). Replacing NaSal with aromatic salts of altered hydrophobicity results in different penetration of the additive in the CTAB micellar core. This altered penetration depth will determine the anisotropic micellar growth that tailors the viscoelastic response. Sodium 4-methylsalicylate (mNaSal) is a higher hydrophobicity alternative to NaSal, requiring less additive to induce strong changes in the viscoelastic properties. Herein, we provide a comparative study of the mNaSal/CTAB system with the reference NaSal/CTAB over a range of temperatures and salt concentrations. The findings from the well-known NaSal/CTAB pair are transferred to the mNaSal/CTAB system, revealing the origins of the WLM solution's viscoelastic properties by discerning contributions from charge screening and micellar core shielding upon small differences in hydrophobicity.
通过电荷屏蔽来调整表面活性剂溶液的流变性能是一种在化妆品、家庭用品、采油、减阻和增稠应用中非常方便的配方工具。表面活性剂在水中自组装,在电荷屏蔽和核屏蔽后,它们会成长为长蠕虫状胶束(WLMs)。这些是软物质物理中最有价值的模型系统,其中研究最多的配方是十六烷基三甲基溴化铵(CTAB)和水杨酸钠(NaSal)。用疏水性改变的芳族盐替代 NaSal 会导致添加剂在 CTAB 胶束核中的不同渗透。这种改变的渗透深度将决定各向异性的胶束生长,从而调整粘弹性响应。对 NaSal 而言, 4-甲基水杨酸钠(mNaSal)是一种疏水性更高的替代品,需要更少的添加剂即可引起粘弹性的显著变化。在此,我们对 mNaSal/CTAB 系统与参考 NaSal/CTAB 系统进行了比较研究,研究范围包括一系列温度和盐浓度。从知名的 NaSal/CTAB 对中获得的发现被转移到 mNaSal/CTAB 系统中,通过辨别在疏水性存在微小差异的情况下电荷屏蔽和胶束核屏蔽的贡献,揭示了 WLM 溶液粘弹性的起源。