Department of Biotechnology, University of Verona, Verona, 37134, Italy.
National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology (IBPM) c/o Department of Biochemical Sciences "A. Rossi Fanelli", "Sapienza" University of Rome, Rome, 00185, Italy.
Mol Plant Microbe Interact. 2021 Apr;34(4):376-396. doi: 10.1094/MPMI-09-20-0248-R. Epub 2021 Mar 26.
pv. is a phytopathogen that causes devastating bacterial canker in kiwifruit. Among five biovars defined by genetic, biochemical, and virulence traits, pv. biovar 3 (Psa3) is the most aggressive and is responsible for the most recent reported outbreaks; however, the molecular basis of its heightened virulence is unclear. Therefore, we designed the first multistrain whole-genome microarray, encompassing biovars Psa1, Psa2, and Psa3 and the well-established model pv. , and analyzed early bacterial responses to an apoplast-like minimal medium. Transcriptomic profiling revealed i) the strong activation in Psa3 of all hypersensitive reaction and pathogenicity () and conserved () cluster genes, encoding components of the type III secretion system required for bacterial pathogenicity and involved in responses to environmental signals; ii) potential repression of the / cluster in Psa2; and iii) activation of flagellum-dependent cell motility and chemotaxis genes in Psa1. The detailed investigation of three gene families encoding upstream regulatory proteins (histidine kinases, their cognate response regulators, and proteins with diguanylate cyclase or phosphodiesterase domains) indicated that cyclic di-GMP may be a key regulator of virulence in pv. biovars. The gene expression data were supported by the quantification of biofilm formation. Our findings suggest that diverse early responses to the host apoplast, even among bacteria belonging to the same pathovar, can lead to different virulence strategies and may explain the differing outcomes of infections. Based on our detailed structural analysis of operons, we also propose a revision of cluster organization and operon regulation in [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
pv. 是一种植物病原体,可导致猕猴桃细菌性溃疡病。在根据遗传、生化和毒力特征定义的五个生物型中,pv. 生物型 3 (Psa3) 是最具攻击性的,也是最近报道的爆发的罪魁祸首;然而,其增强毒力的分子基础尚不清楚。因此,我们设计了第一个多菌株全基因组微阵列,包含生物型 Psa1、Psa2 和 Psa3 以及成熟的模式 pv. ,并分析了细菌对质外体样最小培养基的早期反应。转录组谱分析显示:i)在 Psa3 中,所有过敏反应和致病性 () 和保守 () 簇基因均被强烈激活,这些基因编码细菌致病性所需的 III 型分泌系统的组成部分,并参与环境信号的响应;ii)Psa2 中 / 簇可能受到抑制;iii)Psa1 中鞭毛依赖性细胞运动和趋化性基因被激活。对编码上游调控蛋白(组氨酸激酶、其同源反应调节剂、具有双鸟苷酸环化酶或磷酸二酯酶结构域的蛋白)的三个基因家族的详细研究表明,环二鸟苷酸可能是 pv. 生物型毒力的关键调节剂。基因表达数据得到生物膜形成定量的支持。我们的发现表明,即使在属于同一血清型的细菌中,对宿主质外体的不同早期反应也可能导致不同的毒力策略,并可能解释感染的不同结果。基于我们对 [Formula: see text] 操纵子的详细结构分析,我们还提出了对 [Formula: see text] 操纵子组织和调控的修订 Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.