Suppr超能文献

用地塞米松和 BMP-2 优化犬自体和诱导多能干细胞衍生间充质基质细胞的体外成骨作用。

Optimizing In Vitro Osteogenesis in Canine Autologous and Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells with Dexamethasone and BMP-2.

机构信息

Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

出版信息

Stem Cells Dev. 2021 Feb;30(4):214-226. doi: 10.1089/scd.2020.0144. Epub 2021 Feb 8.

Abstract

A growing body of work suggests that canine mesenchymal stromal cells (cMSCs) require additional agonists such as bone morphogenic protein-2 (BMP-2) for consistent in vitro osteogenic differentiation. BMP-2 is costly and may challenge the translational relevance of the canine model. Dexamethasone enhances osteogenic differentiation of human MSCs (hMSCs) and is widely utilized in osteogenic protocols. The aim of this study was to determine the effect of BMP-2 and dexamethasone on early- and late-stage osteogenesis of autologous and induced pluripotent stem cell (iPS)-derived cMSCs. Two preparations of marrow-derived cMSCs were selected to represent exceptionally or marginally osteogenic autologous cMSCs. iPS-derived cMSCs were generated from canine fibroblasts. All preparations were evaluated using alkaline phosphatase (ALP) activity, Alizarin Red staining of osteogenic monolayers, and quantitative polymerase chain reaction. Data were reported as mean ± standard deviation and compared using one- or two-way analysis of variance and Tukey or Sidak post hoc tests. Significance was established at  < 0.05. In early-stage assays, dexamethasone decreased ALP activity for all cMSCs in the presence of BMP-2. In late-stage assays, inclusion of dexamethasone and BMP-2 at Day 1 of culture produced robust monolayer mineralization for autologous cMSCs. Delivering 100 nM dexamethasone at Day 1 improved mineralization and reduced the BMP-2 concentrations required to achieve mineralization of the marginal cMSCs. For iPS-cMSCs, dexamethasone was inhibitory to both ALP activity and monolayer mineralization. There was increased expression of osteocalcin and osterix with BMP-2 in autologous cMSCs but a more modest expression occurred in iPS cMSCs. While autologous and iPS-derived cMSCs respond similarly in early-stage osteogenic assays, they exhibit unique responses to dexamethasone and BMP-2 in late-stage mineralization assays. This study demonstrates that dexamethasone and BMP-2 can be titrated in a time- and concentration-dependent manner to enhance osteogenesis of autologous cMSC preparations. These results will prove useful for investigators performing translational studies with cMSCs while providing insight into iPS-derived cMSC osteogenesis.

摘要

越来越多的研究表明,犬间充质基质细胞(cMSCs)需要额外的激动剂,如骨形态发生蛋白-2(BMP-2),以实现一致的体外成骨分化。BMP-2 成本高昂,可能会影响犬模型的转化相关性。地塞米松增强了人骨髓间充质干细胞(hMSCs)的成骨分化,并且广泛用于成骨方案中。本研究旨在确定 BMP-2 和地塞米松对自体和诱导多能干细胞(iPS)衍生的 cMSCs 的早期和晚期成骨的影响。选择两种骨髓来源的 cMSC 制剂来代表异常或边缘成骨的自体 cMSCs。iPS 衍生的 cMSCs 是从犬成纤维细胞中生成的。所有制剂均通过碱性磷酸酶(ALP)活性、成骨单层的茜素红染色和定量聚合酶链反应进行评估。数据以平均值±标准差表示,并使用单因素或双因素方差分析以及 Tukey 或 Sidak 事后检验进行比较。设定显著性水平为  < 0.05。在早期测定中,地塞米松在存在 BMP-2 的情况下降低了所有 cMSCs 的 ALP 活性。在晚期测定中,在培养的第 1 天添加地塞米松和 BMP-2 可使自体 cMSCs 的单层矿化非常强烈。在第 1 天提供 100 nM 地塞米松可改善矿化并减少达到边缘 cMSCs 矿化所需的 BMP-2 浓度。对于 iPS-cMSCs,地塞米松对 ALP 活性和单层矿化均具有抑制作用。在自体 cMSCs 中,BMP-2 可增加骨钙素和骨桥蛋白的表达,但在 iPS cMSCs 中则表达更为温和。虽然自体和 iPS 衍生的 cMSCs 在早期成骨测定中反应相似,但它们在晚期矿化测定中对地塞米松和 BMP-2 的反应独特。本研究表明,地塞米松和 BMP-2 可以在时间和浓度依赖性方式中进行滴定,以增强自体 cMSC 制剂的成骨作用。这些结果将有助于从事 cMSCs 转化研究的研究人员,并提供对 iPS 衍生的 cMSC 成骨作用的深入了解。

相似文献

3
Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.
Tissue Eng Regen Med. 2019 Jan 29;16(2):141-150. doi: 10.1007/s13770-018-0173-3. eCollection 2019 Apr.
4
Optimizing the osteogenic differentiation of human mesenchymal stromal cells by the synergistic action of growth factors.
J Craniomaxillofac Surg. 2014 Dec;42(8):2002-9. doi: 10.1016/j.jcms.2014.09.006. Epub 2014 Nov 6.
5
Effects of osteogenic inducers on cultures of canine mesenchymal stem cells.
Am J Vet Res. 2005 Oct;66(10):1729-37. doi: 10.2460/ajvr.2005.66.1729.
10
Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells.
Int J Biochem Cell Biol. 2010 Jul;42(7):1132-41. doi: 10.1016/j.biocel.2010.03.020. Epub 2010 Mar 31.

引用本文的文献

1
Mesenchymal stem cell therapy in veterinary orthopaedics: Evidence from canine clinical medicine.
Vet Res Commun. 2025 Aug 28;49(5):290. doi: 10.1007/s11259-025-10843-4.
2
Shape Memory Polymer Scaffolds-Utility for In Vitro Osteogenesis of Canine Multipotent Stromal Cells.
J Biomed Mater Res B Appl Biomater. 2024 Dec;112(12):e35503. doi: 10.1002/jbm.b.35503.
3
Opening the "Black Box" Underlying Barriers to the Use of Canine Induced Pluripotent Stem Cells: A Narrative Review.
Stem Cells Dev. 2023 Jun;32(11-12):271-291. doi: 10.1089/scd.2022.0300. Epub 2023 Apr 17.
5
Effect of dexamethasone on the growth and differentiation of osteoblast-like cells derived from the human alveolar bone.
J Taibah Univ Med Sci. 2022 Feb 11;17(4):707-714. doi: 10.1016/j.jtumed.2021.12.008. eCollection 2022 Aug.
8
Proteomic Comparison of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells.
Int J Mol Sci. 2021 May 26;22(11):5665. doi: 10.3390/ijms22115665.

本文引用的文献

1
Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects.
Front Bioeng Biotechnol. 2018 Jul 31;6:105. doi: 10.3389/fbioe.2018.00105. eCollection 2018.
2
Animal models for bone tissue engineering and modelling disease.
Dis Model Mech. 2018 Apr 23;11(4):dmm033084. doi: 10.1242/dmm.033084.
3
Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.
Stem Cell Res. 2017 Dec;25:221-232. doi: 10.1016/j.scr.2017.11.010. Epub 2017 Nov 14.
6
Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering.
PLoS One. 2017 May 10;12(5):e0177308. doi: 10.1371/journal.pone.0177308. eCollection 2017.
7
Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts.
Theriogenology. 2017 Apr 1;92:75-82. doi: 10.1016/j.theriogenology.2017.01.013. Epub 2017 Jan 8.
8
Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.
PLoS One. 2016 Dec 1;11(12):e0167442. doi: 10.1371/journal.pone.0167442. eCollection 2016.
10
Mechanisms of Immune Suppression Utilized by Canine Adipose and Bone Marrow-Derived Mesenchymal Stem Cells.
Stem Cells Dev. 2017 Mar 1;26(5):374-389. doi: 10.1089/scd.2016.0207. Epub 2017 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验