文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

骨髓来源成骨细胞与间充质干细胞的蛋白质组学比较。

Proteomic Comparison of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells.

机构信息

Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.

Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway.

出版信息

Int J Mol Sci. 2021 May 26;22(11):5665. doi: 10.3390/ijms22115665.


DOI:10.3390/ijms22115665
PMID:34073480
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8198503/
Abstract

Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs. The osteoblast-specific proteins included several extracellular matrix proteins and a network including 27 proteins that influence intracellular signaling (Wnt/Notch/Bone morphogenic protein pathways) and bone mineralization. The osteoblasts and MSCs showed only minor age- and sex-dependent proteomic differences. Finally, the osteoblast and MSC proteomic profiles were altered by ex vivo culture in serum-free media. We conclude that although the proteomic profiles of osteoblasts and MSCs show many similarities, we identified several osteoblast-specific extracellular matrix proteins and an osteoblast-specific intracellular signaling network. Therapeutic targeting of these proteins will possibly have minor effects on MSCs. Furthermore, the use of ex vivo cultured osteoblasts/MSCs in clinical medicine will require careful standardization of the ex vivo handling of the cells.

摘要

间充质干细胞(MSCs)可以分化为成骨细胞,因此针对这些细胞的治疗方法被认为可用于治疗恶性和非恶性疾病。我们分析了源自 10 位健康个体的成骨细胞和源自 6 位健康个体的间充质干细胞的全球蛋白质组谱,并对成骨细胞定量了 5465 种蛋白质,对间充质干细胞定量了 5420 种蛋白质。两种细胞类型的蛋白质组谱有很大的重叠;156 种蛋白质仅在成骨细胞中被定量,111 种蛋白质仅在间充质干细胞中被定量。成骨细胞特异性蛋白质包括几种细胞外基质蛋白质和一个包含 27 种蛋白质的网络,这些蛋白质影响细胞内信号(Wnt/Notch/骨形态发生蛋白途径)和骨矿化。成骨细胞和间充质干细胞仅显示出轻微的年龄和性别依赖性蛋白质组差异。最后,在无血清培养基中外体培养改变了成骨细胞和间充质干细胞的蛋白质组谱。我们得出结论,尽管成骨细胞和间充质干细胞的蛋白质组谱显示出许多相似之处,但我们鉴定出了几种成骨细胞特异性细胞外基质蛋白质和一个成骨细胞特异性细胞内信号网络。针对这些蛋白质的治疗方法可能对间充质干细胞的影响较小。此外,在临床医学中使用体外培养的成骨细胞/间充质干细胞将需要仔细标准化细胞的体外处理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/bc7d640eeb76/ijms-22-05665-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/5b054b8becbf/ijms-22-05665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/4b27c554832e/ijms-22-05665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/bca01ba41d17/ijms-22-05665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/710d2e8926b0/ijms-22-05665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/37a0978ba8dc/ijms-22-05665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/bc7d640eeb76/ijms-22-05665-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/5b054b8becbf/ijms-22-05665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/4b27c554832e/ijms-22-05665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/bca01ba41d17/ijms-22-05665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/710d2e8926b0/ijms-22-05665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/37a0978ba8dc/ijms-22-05665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf2/8198503/bc7d640eeb76/ijms-22-05665-g006.jpg

相似文献

[1]
Proteomic Comparison of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells.

Int J Mol Sci. 2021-5-26

[2]
Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts.

J Bone Miner Res. 2007-12

[3]
atf4 promotes β-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells.

Int J Biol Sci. 2013-2-27

[4]
Nascent osteoblast matrix inhibits osteogenesis of human mesenchymal stem cells in vitro.

Stem Cell Res Ther. 2015-12-22

[5]
Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.

Stem Cell Res Ther. 2017-4-26

[6]
Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells.

Stem Cells. 2019-3-6

[7]
3,5-dicaffeoyl‑epi-quinic acid from Atriplex gmelinii enhances the osteoblast differentiation of bone marrow-derived human mesenchymal stromal cells via WnT/BMP signaling and suppresses adipocyte differentiation via AMPK activation.

Phytomedicine. 2020-5-15

[8]
Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation.

BMC Genomics. 2007-3-12

[9]
Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche.

Eur Cell Mater. 2012-1-12

[10]
Wnt and BMP signaling pathways co-operatively induce the differentiation of multiple myeloma mesenchymal stem cells into osteoblasts by upregulating EMX2.

J Cell Biochem. 2018-11-18

引用本文的文献

[1]
Secretomes of Gingival Fibroblasts From Periodontally Diseased Tissues: A Proteomic Analysis.

Clin Exp Dent Res. 2025-2

[2]
Proteomic Biomarkers Associated with Low Bone Mineral Density: A Systematic Review.

Int J Mol Sci. 2024-7-9

[3]
Systematic analysis of RNA-binding proteins identifies targetable therapeutic vulnerabilities in osteosarcoma.

Nat Commun. 2024-4-1

[4]
Osteogenic human MSC-derived extracellular vesicles regulate MSC activity and osteogenic differentiation and promote bone regeneration in a rat calvarial defect model.

Stem Cell Res Ther. 2024-2-7

[5]
High Mitochondrial Protein Expression as a Potential Predictor of Relapse Risk in Acute Myeloid Leukemia Patients with the Monocytic FAB Subtypes M4 and M5.

Cancers (Basel). 2023-12-19

[6]
Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin.

Int J Mol Sci. 2023-8-22

[7]
Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects.

Cells. 2023-2-28

[8]
Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps.

Cancers (Basel). 2023-1-16

[9]
A multi-omics study to characterize the transdifferentiation of human dermal fibroblasts to osteoblast-like cells.

Front Mol Biosci. 2022-11-17

[10]
Endocan in Acute Leukemia: Current Knowledge and Future Perspectives.

Biomolecules. 2022-3-24

本文引用的文献

[1]
Bone Marrow-Mesenchymal Stromal Cell Secretome as Conditioned Medium Relieves Experimental Skeletal Muscle Damage Induced by Ex Vivo Eccentric Contraction.

Int J Mol Sci. 2021-3-31

[2]
The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells.

Cancers (Basel). 2021-3-25

[3]
Current research status of HLA in immune-related diseases.

Immun Inflamm Dis. 2021-6

[4]
Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment.

Front Cell Dev Biol. 2021-2-9

[5]
The Extracellular Bone Marrow Microenvironment-A Proteomic Comparison of Constitutive Protein Release by In Vitro Cultured Osteoblasts and Mesenchymal Stem Cells.

Cancers (Basel). 2020-12-28

[6]
Optimizing In Vitro Osteogenesis in Canine Autologous and Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells with Dexamethasone and BMP-2.

Stem Cells Dev. 2021-2

[7]
Systematic review assessing the evidence for the use of stem cells in fracture healing.

Bone Jt Open. 2020-10-6

[8]
Molecular Mechanisms and Emerging Therapeutics for Osteoporosis.

Int J Mol Sci. 2020-10-15

[9]
Implementation of Endogenous and Exogenous Mesenchymal Progenitor Cells for Skeletal Tissue Regeneration and Repair.

Bioengineering (Basel). 2020-8-4

[10]
Insights into the Effects of Mesenchymal Stem Cell-Derived Secretome in Parkinson's Disease.

Int J Mol Sci. 2020-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索