Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
Department of Biochemistry, University of Zurich, Zurich, Switzerland.
Cell. 2021 Jan 21;184(2):545-559.e22. doi: 10.1016/j.cell.2020.12.021. Epub 2020 Dec 23.
Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.
生物过程受到分子间相互作用和化学修饰的调节,这些相互作用和修饰不会影响蛋白质水平,因此在经典的蛋白质组学筛选中无法检测到。我们在这里证明,基于有限蛋白酶解-质谱(LiP-MS)的全局蛋白质结构读数可以同时原位检测到在营养适应过程中的细菌和急性应激响应中的酵母中发生的许多此类功能改变。结构读数以结构条码的形式可视化,可以捕获酶活性变化、磷酸化、蛋白质聚集和复合物形成,以及单个调节功能位点(如结合和活性位点)的分辨率。与包括其他“组学”数据在内的先前知识进行比较表明,LiP-MS 可以检测到在经过充分研究的途径中许多已知的功能改变。它还提示了不同的代谢物-蛋白质相互作用,并使人们能够确定大肠杆菌中基于果糖-1,6-二磷酸的葡萄糖摄取的调节机制。结构读数大大增加了经典蛋白质组学的覆盖范围,生成了机制假设,并为原位结构系统生物学铺平了道路。