Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia.
Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia.
Carbohydr Polym. 2021 Feb 15;254:117312. doi: 10.1016/j.carbpol.2020.117312. Epub 2020 Oct 31.
Vitexin of Ficus deltoidea exhibits intestinal α-glucosidase inhibitory and blood glucose lowering effects. This study designs oral intestinal-specific alginate nanoparticulate system of vitexin. Nanospray-dried alginate, alginate/stearic acid and alginate-C18 conjugate nanoparticles were prepared. Stearic acid was adopted to hydrophobize the matrix and minimize premature vitexin release in stomach, whereas C-18 conjugate as immobilized fatty acid to sustain hydrophobic effect and drug release. Nanoparticles were compacted with polyethylene glycol (PEG 3000, 10,000 and 20,000). The physicochemical, drug release, in vivo blood glucose lowering and intestinal vitexin content of nanoparticles and compact were determined. Hydrophobization of alginate nanoparticles promoted premature vitexin release. Compaction of nanoparticles with PEG minimized vitexin release in the stomach, with stearic acid loaded nanoparticles exhibiting a higher vitexin release in the intestine. The introduction of stearic acid reduced vitexin-alginate interaction, conferred alginate-stearic acid mismatch, and dispersive stearic acid-induced particle breakdown with intestinal vitexin release. Use of PEG 10,000 in compaction brought about PEG-nanoparticles interaction that negated initial vitexin release. The PEG dissolution in intestinal phase subsequently enabled particle breakdown and vitexin release. The PEG compacted nanoparticles exhibited oral intestinal-specific vitexin release, with positive blood glucose lowering and enhanced intestinal vitexin content in vivo.
五指山榕叶藤中的牡荆素具有抑制肠道α-葡萄糖苷酶和降低血糖的作用。本研究设计了牡荆素的口服肠道特异性海藻酸钠纳米颗粒系统。制备了纳米喷雾干燥的海藻酸钠、海藻酸钠/硬脂酸和海藻酸钠-C18 轭合物纳米粒子。硬脂酸被用来疏水化基质,以最大限度地减少牡荆素在胃中的过早释放,而 C-18 轭合物作为固定化脂肪酸来维持疏水性和药物释放。纳米粒子与聚乙二醇(PEG 3000、10000 和 20000)压缩。测定了纳米粒子和压缩物的物理化学性质、药物释放、体内降血糖和肠道牡荆素含量。海藻酸钠纳米粒子的疏水化促进了牡荆素的过早释放。用 PEG 压缩纳米粒子可最大限度地减少牡荆素在胃中的释放,硬脂酸负载的纳米粒子在肠道中释放更高的牡荆素。硬脂酸的引入减少了牡荆素-海藻酸钠的相互作用,赋予了海藻酸钠-硬脂酸不匹配,并通过肠道牡荆素释放导致分散的硬脂酸诱导的颗粒破裂。在压缩过程中使用 PEG 10000 会导致 PEG-纳米粒子相互作用,从而否定了初始牡荆素释放。随后在肠道阶段溶解 PEG 使颗粒破裂并释放牡荆素。PEG 压缩的纳米粒子表现出口服肠道特异性牡荆素释放,具有降血糖作用,并在体内增强了肠道牡荆素含量。