Suppr超能文献

用于临床路径聚类的改进型Needleman-Wunsch算法

Modified Needleman-Wunsch algorithm for clinical pathway clustering.

作者信息

Aspland Emma, Harper Paul R, Gartner Daniel, Webb Philip, Barrett-Lee Peter

机构信息

School of Mathematics, Cardiff University, Cardiff, United Kingdom.

School of Mathematics, Cardiff University, Cardiff, United Kingdom.

出版信息

J Biomed Inform. 2021 Mar;115:103668. doi: 10.1016/j.jbi.2020.103668. Epub 2021 Jan 27.

Abstract

Clinical pathways are used to guide clinicians to provide a standardised delivery of care. Because of their standardisation, the aim of clinical pathways is to reduce variation in both care process and patient outcomes. When learning clinical pathways from data through data mining, it is common practice to represent each patient pathway as a string corresponding to their movements through activities. Clustering techniques are popular methods for pathway mining, and therefore this paper focuses on distance metrics applied to string data for k-medoids clustering. The two main aims are to firstly, develop a technique that seamlessly integrates expert information with data and secondly, to develop a string distance metric for the purpose of process data. The overall goal was to allow for more meaningful clustering results to be found by adding context into the string similarity calculation. Eight common distance metrics and their applicability are discussed. These distance metrics prove to give an arbitrary distance, without consideration for context, and each produce different results. As a result, this paper describes the development of a new distance metric, the modified Needleman-Wunsch algorithm, that allows for expert interaction with the calculation by assigning groupings and rankings to activities, which provide context to the strings. This algorithm has been developed in partnership with UK's National Health Service (NHS) with the focus on a lung cancer pathway, however the handling of the data and algorithm allows for application to any disease type. This method is contained within Sim.Pro.Flow, a publicly available decision support tool.

摘要

临床路径用于指导临床医生提供标准化的护理服务。由于其标准化,临床路径的目的是减少护理过程和患者预后的差异。当通过数据挖掘从数据中学习临床路径时,通常的做法是将每个患者路径表示为与其在各项活动中的进展相对应的字符串。聚类技术是路径挖掘的常用方法,因此本文重点关注应用于字符串数据的k-中心点聚类的距离度量。两个主要目标是,首先,开发一种将专家信息与数据无缝集成的技术;其次,为过程数据开发一种字符串距离度量。总体目标是通过在字符串相似度计算中添加上下文信息,以便找到更有意义的聚类结果。文中讨论了八种常见的距离度量及其适用性。这些距离度量被证明会给出任意距离,而不考虑上下文,并且每种度量都会产生不同的结果。因此,本文描述了一种新的距离度量——改进的Needleman-Wunsch算法的开发,该算法通过为活动分配分组和排名,允许专家参与计算,从而为字符串提供上下文信息。该算法是与英国国家医疗服务体系(NHS)合作开发的,重点是肺癌临床路径,不过数据处理和算法允许应用于任何疾病类型。此方法包含在Sim.Pro.Flow中,这是一个公开可用的决策支持工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4e/7973729/dc683d9746d1/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验