CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal; CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto (UP), 4169-007, Porto, Portugal; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands.
Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands.
Free Radic Biol Med. 2021 Feb 1;163:314-324. doi: 10.1016/j.freeradbiomed.2020.12.023. Epub 2020 Dec 29.
Phytochemical antioxidants like gallic and caffeic acid are constituents of the normal human diet that display beneficial health effects, potentially via activating stress response pathways. Using primary human skin fibroblasts (PHSFs) as a model, we here investigated whether such pathways were induced by novel mitochondria-targeted variants of gallic acid (AntiOxBEN) and caffeic acid (AntiOxCIN). Both molecules reduced cell viability with similar kinetics and potency (72 h incubation, IC50 ~23 μM). At a relatively high but non-toxic concentration (12.5 μM), AntiOxBEN and AntiOxCIN increased ROS levels (at 24 h), followed by a decline (at 72 h). Further analysis at the 72 h timepoint demonstrated that AntiOxBEN and AntiOxCIN did not alter mitochondrial membrane potential (Δψ), but increased cellular glutathione (GSH) levels, mitochondrial NAD(P)H autofluorescence, and mitochondrial superoxide dismutase 2 (SOD2) protein levels. In contrast, cytosolic SOD1 protein levels were not affected. AntiOxBEN and AntiOxCIN both stimulated the gene expression of Nuclear factor erythroid 2-related factor 2 (NRF2; a master regulator of the cellular antioxidant response toward oxidative stress). AntiOxBEN2 and ANtiOxCIN4 differentially affected the gene expression of the antioxidants Heme oxygenase 1 (HMOX1) and NAD(P)H dehydrogenase (quinone) 1 (NQO1). Both antioxidants did not protect from cell death induced by GSH depletion and AntiOxBEN (but not AntiOxCIN) antagonized hydrogen peroxide-induced cell death. We conclude that AntiOxBEN and AntiOxCIN increase ROS levels, which stimulates NRF2 expression and, as a consequence, SOD2 and GSH levels. This highlights that AntiOxBEN and AntiOxCIN can act as prooxidants thereby activating endogenous ROS-protective pathways.
植物化学抗氧化剂,如没食子酸和咖啡酸,是人类正常饮食的组成部分,具有有益的健康作用,可能通过激活应激反应途径。本文使用原代人皮肤成纤维细胞(PHSF)作为模型,研究了这些途径是否被新型靶向线粒体的没食子酸(AntiOxBEN)和咖啡酸(AntiOxCIN)变体所诱导。这两种分子以相似的动力学和效力(72 h 孵育,IC50~23 μM)降低细胞活力。在相对较高但无毒的浓度(12.5 μM)下,AntiOxBEN 和 AntiOxCIN 在 24 h 时增加了 ROS 水平,然后在 72 h 时下降。在 72 h 时间点的进一步分析表明,AntiOxBEN 和 AntiOxCIN 不会改变线粒体膜电位(Δψ),但增加了细胞内谷胱甘肽(GSH)水平、线粒体 NAD(P)H 自发荧光和线粒体超氧化物歧化酶 2(SOD2)蛋白水平。相比之下,细胞溶质 SOD1 蛋白水平不受影响。AntiOxBEN 和 AntiOxCIN 均刺激核因子红细胞 2 相关因子 2(NRF2;细胞抗氧化应激反应对氧化应激的主要调节剂)的基因表达。AntiOxBEN2 和 ANtiOxCIN4 对抗氧化剂血红素加氧酶 1(HMOX1)和 NAD(P)H 脱氢酶(醌)1(NQO1)的基因表达有不同影响。两种抗氧化剂都不能防止 GSH 耗竭诱导的细胞死亡,AntiOxBEN(但不是 AntiOxCIN)拮抗了过氧化氢诱导的细胞死亡。我们得出结论,AntiOxBEN 和 AntiOxCIN 增加 ROS 水平,刺激 NRF2 表达,进而增加 SOD2 和 GSH 水平。这强调了 AntiOxBEN 和 AntiOxCIN 可以作为促氧化剂,从而激活内源性 ROS 保护途径。