Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France; Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France.
Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France.
Acta Biomater. 2021 Mar 15;123:123-153. doi: 10.1016/j.actbio.2020.12.032. Epub 2021 Jan 8.
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
骨组织工程(BTE)领域专注于修复无法通过自然愈合过程恢复的大型骨缺损。为此,广泛研究了模仿天然骨细胞外基质(ECM)的合成材料,并且有许多组成和结构的组合是可能的。特别是,通过在电场下拉伸粘弹性溶液,静电纺丝工艺可以再现骨 ECM 的纤维状结构。通过这种方法,可以生产出具有可调节化学成分的纳米/微米尺寸的纤维。因此,通过静电纺丝对二氧化硅、生物活性玻璃和磷酸钙等生物活性陶瓷进行塑形,可以获得其在 BTE 中应用的有前景的性能。这篇综述重点介绍了基于生物陶瓷的纤维的原位合成和同步静电纺丝,同时将使用每种材料的原因与其生物活性相关联。针对这些材料的合成和静电纺丝进行了理论和实际考虑。最后,展示了使用这种无机纤维对不同系统的体外和体内生物活性的研究。