Suppr超能文献

从国家碰撞数据中为弱势道路使用者推导出功能安全(ISO 26262)S 参数。

Deriving functional safety (ISO 26262) S-parameters for vulnerable road users from national crash data.

机构信息

University of Mannheim, Mannheim, Germany.

Volkswagen AG, Wolfsburg, Germany.

出版信息

Accid Anal Prev. 2021 Feb;150:105884. doi: 10.1016/j.aap.2020.105884. Epub 2020 Dec 21.

Abstract

Currently, advanced driver assistance systems (ADAS) and automated vehicles (AV) are designed for use in the existing road infrastructure. These partially and fully automated vehicles will be operated in a shared space not only with other vehicles but also with vulnerable road users (VRU). Even though crashes between ADAS equipped vehicles or AV and VRU seem inevitable in such a scenario, functional safety, i.e., the assessment of the quality and safety level of the automation system, plays a crucial role in minimizing the crash frequency and the injury severity. We develop a data-driven approach to injury severity estimation for functional safety, i.e., ISO 26262 S-parameters, for four types of VRU: pedestrians, bicyclists, scooterists, and motorcycle riders. To estimate the S-parameter, the 90th-percentile of the injury severity distribution in the S-scale, a population-based data set (Germany's national data set DESTATIS) is used. Since the description of the injury severity in DESTATIS is not detailed enough for a direct one-to-one mapping to the S-scale, we enhance the level of detail in the population-based data set by using additional information from the German in-depth accident study (GIDAS), an in-depth, size-limited survey of part of the same population. Thus, we are able to transform the 4-level injury scale (uninjured, slightly injures, severely injured, and fatal) of the police reports found in DESTATIS into the three breakpoints of the injury severity scale (ISS) (ISS ≥{4, 9, 16}) which in turn directly translate to the four levels of the S-scale. Furthermore, the ISS ≥9 breakpoint more or less equates to MAIS 3+, the definition of 'severe injury' in nearly all international road safety goals that look beyond fatalities. The derived injury scale transformation can be utilized to translate the injury severities of the police-reported cases to the politically needed MAIS 3+ distribution. Thus, population-based data can be directly used to estimate the proportion of these 'severely injured.' The crashes are analyzed from the perspective of the VRU as well as from the vehicle type involved. We stratified the opposing vehicles by injury mechanism: wrap projection for bonnet type passenger vehicles (BTV), forward projection for box type vehicles like light trucks (LTV), as well as single-vehicle crashes. We cluster the crash data into traffic domains based on the speed limit: shared zone, residential streets, city roads, arterial thoroughfares, rural roads, and autobahn. For each VRU type, injury mechanism, and traffic domain, the S-parameters, i.e., the 90th-percentile of the injury severity measured in S-scale, are calculated with a one-sided 95% confidence level. Exemplary applications of the results are given in the discussion: an evaluation of an AV hitting a crossing pedestrian, an in-lane swerving ADAS system for VRU avoidance, and the rating of the nominal performance of an inflatable helmet for pedestrians.

摘要

目前,高级驾驶辅助系统(ADAS)和自动驾驶汽车(AV)旨在在现有的道路基础设施中使用。这些部分和完全自动驾驶的车辆不仅将与其他车辆共享空间,还将与弱势道路使用者(VRU)共享空间。尽管在这种情况下,ADAS 配备的车辆或 AV 与 VRU 之间的碰撞似乎不可避免,但功能安全,即评估自动化系统的质量和安全水平,对于降低碰撞频率和伤害严重程度至关重要。我们开发了一种数据驱动的方法来估计功能安全性(即 ISO 26262 S 参数)的伤害严重程度,适用于四种类型的 VRU:行人、骑自行车的人、踏板车骑手和骑摩托车的人。为了估计 S 参数,我们使用基于人群的数据集(德国国家数据集 DESTATIS)中的 S 量表中伤害严重程度分布的第 90 个百分位数。由于 DESTATIS 中对伤害严重程度的描述不够详细,无法直接一一映射到 S 量表,因此我们通过使用德国深入事故研究(GIDAS)中的附加信息来增强基于人群的数据集的详细程度,这是对同一人群的一部分进行的深入、有限的调查。因此,我们能够将 DESTATIS 中发现的警方报告中的 4 级伤害量表(未受伤、轻微受伤、严重受伤和致命)转换为伤害严重程度量表(ISS)的三个断点(ISS≥{4、9、16}),这反过来又直接转换为 S 量表的四个级别。此外,ISS≥9 断点或多或少等同于 MAIS 3+,这是几乎所有超越死亡的国际道路安全目标中“严重伤害”的定义。派生的伤害量表转换可用于将警方报告案例的伤害严重程度转换为政治上需要的 MAIS 3+分布。因此,可以直接使用基于人群的数据来估计这些“重伤”的比例。从 VRU 的角度以及从涉及的车辆类型的角度分析了碰撞。我们根据伤害机制对相对车辆进行分层:发动机罩式乘用车的包裹投影(BTV)、货车等厢式车辆的前向投影(LTV)以及单车碰撞。我们根据限速将碰撞数据聚类到交通区域:共享区、住宅区、城市道路、动脉干道、农村道路和高速公路。对于每个 VRU 类型、伤害机制和交通区域,我们使用单侧 95%置信水平计算 S 参数,即 S 量表中测量的伤害严重程度的第 90 个百分位数。结果的示例应用在讨论中给出:评估 AV 撞击横道行人、用于 VRU 避免的车道内转向 ADAS 系统以及评估行人充气头盔的名义性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验