Bio-, Electro- and Mechanical Systems, CP165/56, Université Libre de Bruxelles, Avenue F. D. Roosevelt, 50, Brussels 1050, Belgium; Laboratoire de Neurophysiologie Sensorielle et Cognitive, CP403/22, Brugmann Hospital, Place Van Gehuchten 4, Brussels 1020, Belgium.
Bio-, Electro- and Mechanical Systems, CP165/56, Université Libre de Bruxelles, Avenue F. D. Roosevelt, 50, Brussels 1050, Belgium; Laboratoire de Neurophysiologie Sensorielle et Cognitive, CP403/22, Brugmann Hospital, Place Van Gehuchten 4, Brussels 1020, Belgium; Laboratory of Neurosensory Biophysics Unité mixte de recherche, Institut national de la santé et de la recherche médicale, University Clermont Auvergne, 28 Place Henri Dunant, BP38, Clermont-Ferrand F63001, France.
Hear Res. 2021 Mar 1;401:108157. doi: 10.1016/j.heares.2020.108157. Epub 2020 Dec 17.
Multiple auditory structures, from cochlea to cortex, phase-lock to the envelope of complex stimuli. The relative contributions of these structures to the human surface-recorded envelope-following response (EFR) are still uncertain. Identification of the active contributor(s) is complicated by the fact that even the simplest two-tone (f&f) stimulus, targeting its (f-f) envelope, evokes additional linear (f&f) and non-linear (2f-f) phase-locked components as well as a transient auditory brainstem response (ABR). Here, we took advantage of the generalized primary tone phase variation method to isolate each predictable component in the time domain, allowing direct measurements of onset latency, duration and phase discontinuity values from which the involved generators were inferred. Targeting several envelope frequencies (0.22-1 kHz), we derived the EFR transfer functions along a vertical vertex-to-neck and a horizontal earlobe-to-earlobe recording channels, yielding respectively EFR-V and EFR-H waveforms. Subjects (N= 30) were sleeping children with normal electrophysiological thresholds and normal oto-acoustic emissions. Both EFR-H and EFR-V phase-locking values (PLV) transfer functions had a low-pass profile, EFR-V showing a lower cut-off frequency than EFR-H. We also computed the frequency-latency relationships of both EFRs onset latencies. EFR-H data fitted a power-law function incorporating a frequency-dependent traveling wave delay and a fixed one amounting to 1.2 ms. The fitted function nicely fell within five published estimations of the latency-frequency function of the ABR wave-I, thus pointing to a cochlear nerve origin. The absence of phase discontinuity and overall response durations that were equal to that of the stimulus indicated no contribution from a later generator. The recording of an entirely similar EFR-H response in a patient who had severe brainstem encephalitis with a normal, isolated, ABR wave-I but complete absence of later waves, further substantiated a cochlear nerve origin. Modeling of the EFR-V latency-frequency functions indicated a fixed transport time of 2 ms with respect to EFR-H onset, suggesting a cochlear nucleus (CN) origin, here also, without indication for multiple generators. Other features of the EFR-V response pointing to the CN were, at least for the EFR frequency below the cut-off values of the transfer functions, higher PLVs coupled with increased harmonic distortion. Such a behavior has been described in the so-called highly-synchronized neurons of the ventral cochlear nucleus (VCN). The present study compellingly demonstrated the advantage of isolating the EFR in the temporal domain so as to extract detailed spectro-temporal parameters that, combined with orthogonal recording channels, shed new light on the involved neural generators.
多个听觉结构,从耳蜗到皮层,与复杂刺激的包络相位锁定。这些结构对人类表面记录的包络跟随反应 (EFR) 的相对贡献仍不确定。由于即使是最简单的双音(f&f)刺激,针对其(f-f)包络,也会引发额外的线性(f&f)和非线性(2f-f)相位锁定成分以及短暂的听觉脑干反应 (ABR),因此确定活跃的贡献者变得复杂。在这里,我们利用广义的基音相位变化方法在时域中分离每个可预测的成分,允许直接测量起始潜伏期、持续时间和相位不连续性值,从而推断出涉及的发生器。针对多个包络频率(0.22-1 kHz),我们沿着垂直顶点到颈部和水平耳垂到耳垂记录通道得出 EFR 传递函数,分别产生 EFR-V 和 EFR-H 波形。研究对象(N=30)为睡眠中的儿童,具有正常的电生理阈值和正常的耳声发射。EFR-H 和 EFR-V 相位锁定值 (PLV) 传递函数都具有低通特性,EFR-V 的截止频率低于 EFR-H。我们还计算了两个 EFR 的起始潜伏期的频率-潜伏期关系。EFR-H 数据拟合了一个包含频率相关行波延迟和固定延迟 1.2 ms 的幂律函数。拟合函数很好地落在五个已发表的 ABR 波-I 潜伏期-频率函数的估计值内,因此指向耳蜗神经起源。没有相位不连续性和与刺激相等的整体反应持续时间表明没有来自后续发生器的贡献。在一位患有严重脑干脑炎的患者中记录到完全相似的 EFR-H 反应,该患者的 ABR 波-I 正常、孤立,但后来的波完全缺失,进一步证实了耳蜗神经起源。EFR-V 潜伏期-频率函数的建模表明相对于 EFR-H 起始有 2 ms 的固定传输时间,表明起源于耳蜗核 (CN),这里也没有指示多个发生器。EFR-V 反应的其他特征指向 CN,至少对于低于传递函数截止值的 EFR 频率,更高的 PLV 伴随着谐波失真的增加。这种行为已在所谓的腹侧耳蜗核 (VCN) 的高度同步神经元中进行了描述。本研究有力地证明了在时域中分离 EFR 的优势,以便提取详细的光谱-时间参数,结合正交记录通道,为涉及的神经发生器提供了新的见解。