Suppr超能文献

频率跟随反应中的频率依赖性精细结构:多个发生器的副产物。

Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators.

作者信息

Tichko Parker, Skoe Erika

机构信息

Department of Psychological Sciences, Developmental Psychology Program, University of Connecticut, Storrs, CT 06269, USA.

Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Psychological Sciences, Developmental Psychology Program, University of Connecticut, Storrs, CT 06269, USA; Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA.

出版信息

Hear Res. 2017 May;348:1-15. doi: 10.1016/j.heares.2017.01.014. Epub 2017 Jan 28.

Abstract

The frequency-following response (FFR) is an auditory-evoked response recorded at the scalp that captures the spectrotemporal properties of tonal stimuli. Previous investigations report that the amplitude of the FFR fluctuates as a function of stimulus frequency, a phenomenon thought to reflect multiple neural generators phase-locking to the stimulus with different response latencies. When phase-locked responses are offset by different latencies, constructive and destructive phase interferences emerge in the volume-conducted signals, culminating in an attenuation or amplification of the scalp-recorded response in a frequency-specific manner. Borrowing from the literature on the audiogram and otoacoustic emissions (OAEs), we refer to this frequency-specific waxing and waning of the FFR amplitude as fine structure. While prior work on the human FFR was limited by small sets of stimulus frequencies, here, we provide the first systematic investigation of FFR fine structure using a broad stimulus set (90 + frequencies) that spanned the limits of human pitch perception. Consistent with predictions, the magnitude of the FFR response varied systematically as a function of stimulus frequency between 16.35 and 880 Hz. In our dataset, FFR high points (local maxima) emerged at ∼44, 87, 208, and 415 Hz with FFR valleys (local minima) emerging ∼62, 110, 311, and 448 Hz. To investigate whether these amplitude fluctuations are the result of multiple neural generators with distinct latencies, we created a theoretical model of the FFR that included six putative generators. Based on the extant literature on the sources of the FFR, our model adopted latencies characteristic of the cochlear microphonic (0 ms), cochlear nucleus (∼1.25 ms), superior olive (∼3.7 ms), and inferior colliculus (∼5 ms). In addition, we included two longer latency putative generators (∼13 ms, and ∼25 ms) reflective of the characteristic latencies of primary and non-primary auditory cortical structures. Our model revealed that the FFR fine structure observed between 16.35 and 880 Hz can be explained by the phase-interaction patterns created by six generators with relative latencies spaced between 0 and 25 ms. In addition, our model provides confirmatory evidence that both subcortical and cortical structures are activated by low-frequency (<100 Hz) tones, with the cortex being less sensitive to frequencies > 100 Hz. Collectively, these findings highlight (1) that the FFR is a composite response; (2) that the FFR at any given frequency can reflect activity from multiple generators; (3) that the fine-structure pattern between 16.35 and 880 Hz is the collective outcome of short- and long-latency generators; (4) that FFR fine structure is epiphenomenal in that it reflects how volume-conducted electrical potentials originating from different sources with different latencies interact at scalp locations, not how these different sources actually interact in the brain; and (5) that as a byproduct of these phase-interaction patterns low-amplitude responses will emerge at some frequencies, even when the underlying generators are fully functioning. We believe these findings call for a re-examination of how FFR amplitude is interpreted in both clinical and experimental contexts.

摘要

频率跟随反应(FFR)是一种记录在头皮上的听觉诱发电位,它捕捉了音调刺激的频谱时间特性。先前的研究报告称,FFR的幅度会随着刺激频率的变化而波动,这种现象被认为反映了多个神经发生器以不同的反应潜伏期与刺激锁相。当锁相反应因不同的潜伏期而偏移时,在容积传导信号中会出现相长和相消干涉,最终导致头皮记录反应在特定频率上衰减或放大。借鉴听力图和耳声发射(OAE)的文献,我们将FFR幅度这种特定频率的起伏称为精细结构。虽然先前关于人类FFR的研究受到刺激频率集较小的限制,但在这里,我们首次使用涵盖人类音高感知极限的广泛刺激集(90多个频率)对FFR精细结构进行了系统研究。与预测一致,FFR反应的幅度在16.35至880Hz之间随刺激频率系统变化。在我们的数据集中,FFR高峰(局部最大值)出现在约44、87、208和415Hz,FFR低谷(局部最小值)出现在约62、110、311和448Hz。为了研究这些幅度波动是否是由具有不同潜伏期的多个神经发生器引起的,我们创建了一个FFR理论模型,该模型包括六个假定的发生器。基于关于FFR来源的现有文献,我们的模型采用了耳蜗微音器(0ms)、耳蜗核(约1.25ms)、上橄榄核(约3.7ms)和下丘(约5ms)的潜伏期特征。此外,我们还纳入了两个潜伏期更长的假定发生器(约13ms和约25ms),以反映初级和非初级听觉皮层结构的特征潜伏期。我们的模型表明,在16.35至880Hz之间观察到的FFR精细结构可以由六个潜伏期相对间隔在0至25ms之间的发生器产生的相位相互作用模式来解释。此外,我们的模型提供了确凿证据,表明皮层下和皮层结构都被低频(<100Hz)音调激活,而皮层对>100Hz的频率不太敏感。总体而言,这些发现突出了:(1)FFR是一种复合反应;(2)在任何给定频率下的FFR都可以反映多个发生器的活动;(3)16.35至880Hz之间的精细结构模式是短潜伏期和长潜伏期发生器的共同结果;(4)FFR精细结构是一种附带现象,因为它反映了来自不同来源、具有不同潜伏期的容积传导电位在头皮位置的相互作用方式,而不是这些不同来源在大脑中的实际相互作用方式;(5)作为这些相位相互作用模式的副产品,即使潜在的发生器功能完全正常,在某些频率下也会出现低幅度反应。我们认为这些发现需要重新审视在临床和实验背景下如何解释FFR幅度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验